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Neural dynamics at successive stages of
the ventral visual stream are consistent
with hierarchical error signals
Elias B Issa†*, Charles F Cadieu‡, James J DiCarlo

Department of Brain and Cognitive Sciences, McGovern Institute for Brain
Research, Massachusetts Institute of Technology, Cambridge, United States

Abstract Ventral visual stream neural responses are dynamic, even for static image

presentations. However, dynamical neural models of visual cortex are lacking as most progress has

been made modeling static, time-averaged responses. Here, we studied population neural

dynamics during face detection across three cortical processing stages. Remarkably,~30

milliseconds after the initially evoked response, we found that neurons in intermediate level areas

decreased their responses to typical configurations of their preferred face parts relative to their

response for atypical configurations even while neurons in higher areas achieved and maintained a

preference for typical configurations. These hierarchical neural dynamics were inconsistent with

standard feedforward circuits. Rather, recurrent models computing prediction errors between

stages captured the observed temporal signatures. This model of neural dynamics, which simply

augments the standard feedforward model of online vision, suggests that neural responses to

static images may encode top-down prediction errors in addition to bottom-up feature estimates.

DOI: https://doi.org/10.7554/eLife.42870.001

Introduction
The primate ventral visual stream is a hierarchically organized set of cortical areas beginning with the

primary visual cortex (V1) and culminating with distributed patterns of neural firing across the inferior

temporal cortex (IT) that explicitly encode objects (i.e. linearly decodable object identity)

(Hung et al., 2005) and quantitatively account for core invariant object discrimination behavior in

primates (Majaj et al., 2015). Formalizing object recognition as the result of a series of feedforward

computations yields models that achieve impressive performance in object categorization

(Krizhevsky et al., 2012; Zeiler and Fergus, 2013) similar to the absolute level of performance

achieved by IT neural populations, and these models are the current best predictors of neural

responses in IT cortex and its primary input layer, V4 (Cadieu et al., 2014; Yamins et al., 2014).

Thus, the feedforward inference perspective provides a simple but powerful, first-order framework

for the ventral stream and core invariant object recognition.

However, visual object recognition behavior may not be executed via a single feedforward neural

processing pass (a.k.a. feedforward inference) because IT neural responses are well-known to be

dynamic even in response to images without dynamic content (Brincat and Connor,

2006; Sugase et al., 1999; Chen et al., 2014; Meyer et al., 2014), raising the question of what

computations those neural activity dynamics might reflect. Prior work has proposed that such neuro-

nal response dynamics could be the result of different types of circuits executing different types of

computation such as: (1) recurrent circuits within each ventral stream processing stage implementing

local normalization of the feedforward information as it passes through that stage (Carandini et al.,

1997; Schwartz and Simoncelli, 2001; Carandini and Heeger, 2011), (2) feedback circuits between

each pair of ventral stream stages implementing the integration of top-down with bottom-up
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information to improve the current (online) inference (Seung, 1997; Lee et al., 2002; Zhang and

von der Heydt, 2010; Epshtein et al., 2008), or (3) feedback circuits between each pair of stages

comparing top-down and bottom-up information to compute prediction errors that guide changes

in synaptic weights so that neurons are better tuned to features useful for future feedforward behav-

ior (learning) (Rao and Ballard, 1999). Thus, neural dynamics may reflect the various adaptive com-

putations (within-stage normalization, top-down Bayesian inference) or reflect the underlying error

intermediates that could be generated during those processes (e.g. predictive coding).

These computationally motivated ideas can each be formalized in neural circuits that contain

feedforward, lateral (normalization), or feedback (hierarchical Bayesian inference) connections to ask

which connection motif best predicts response dynamics across the visual hierarchy. Here, our main

goal was to look beyond the initial, feedforward response edge to see if we could disambiguate

among dynamics that might result from stacked feedforward, lateral, and feedback operations.

Rather than record from a single processing level, we measured the dynamics of neural signals

across three hierarchical levels (pIT, cIT, aIT) within macaque IT. We focused on face processing sub-

regions within each of these levels for three reasons. First, prior evidence argues that these three

face processing subregions are tightly anatomically and functionally connected and that the subre-

gion in pIT is the dominant input to the higher subregions (Grimaldi et al., 2016; Moeller et al.,

2008). Second, because prior work argues that a key behavioral function of these three subregions

is to distinguish faces from non-faces, this allowed us to focus our testing on a relatively small num-

ber of images targeted to engage that processing function. Third, prior knowledge of pIT neural tun-

ing properties (Issa and DiCarlo, 2012) allowed us to design images that were quantitatively

matched in their ability to drive neurons in the pIT input subregion but that should ultimately be

processed into two separate groups (face vs non-face). We reasoned that these images would force

important computations for disambiguation to occur somewhere between the pIT subregion and the

higher level (cIT, aIT) subregions. With this setup, our aim was to observe the dynamics at all three

levels of the hierarchy in response to that image processing challenge so that we might discover – or

at least constrain – which type of computation is at work.

Consistent with the idea that the overall system performs – among other things – face vs non-face

discrimination (i.e. face detection), we found that in the highest face processing stage (aIT), neurons

rapidly developed and maintained a response preference for the typical frontal configuration of the

face parts even though our images were designed to be challenging for frontal face detection. How-

ever, we found that many neurons in the early (pIT) and intermediate (cIT) processing levels of IT par-

adoxically showed an overall stronger response for atypical face-part configurations relative to

typical face-part configurations over time. That is, these neurons evolved an apparent preference for

images of misarranged face parts within 30 milliseconds of their feedforward response. We found

that standard feedforward models that employ local recurrences such as adaptation, lateral inhibi-

tion, and normalization could not capture this stage-wise pattern of image selectivity despite our

best attempts. However, we found that a decreasing – rather than increasing – relative preference

for typical face-part configurations in early and intermediate processing stages is a natural dynamical

signature of previously suggested ‘error coding’ models (Rao and Ballard, 1999) in which the neural

spiking activity at each processing stage carries both an explicit representation of the variables of

interest (e.g. Is an eye present? And is a whole face present?) and an explicit encoding of errors

computed between each pair of stages in the hierarchy (e.g. a face was present, but the eye was not

present at the correct location).

Results
We leveraged the hierarchically arranged face processing system in macaque ventral visual cortex to

study the dynamics of neural processing across a hierarchy (Tsao et al., 2006; Tsao et al., 2008)

(Figure 1A). The serially arranged posterior, central, and anterior face-selective subregions of IT

(pIT, cIT, and aIT) can be conceptualized as building increasing selectivity for faces culminating in aIT

representations (Freiwald and Tsao, 2010; Chang and Tsao, 2017). Using serial, single electrode

recording, we sampled neural sites across the posterior to anterior extent of the IT hierarchy in the

left hemispheres of two monkeys to generate neurophysiological maps (Figure 1A; example neuro-

physiological map in one monkey using a faces versus non-face objects screen set) (Issa et al.,

2013). We localized the recording locations in vivo and co-registered across all penetrations using a
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stereo microfocal x-ray system (~400 micron in vivo resolution) (Cox et al., 2008; Issa et al., 2010)

allowing accurate assignment of sites to different face processing stages (n = 633 out of 1891 total

sites recorded were assigned as belonging to a face-selective subregion based on their spatial loca-

tion; see Materials and methods). Results are reported here for sites that were spatially located in a

face-selective subregion, that showed visual drive to any category in the screen set (see

Materials and methods), and that were subsequently tested with our face versus non-face challenge

set (Figure 1B, left panel) (n = 115 pIT, 70 cIT, and 40 aIT sites).

Our experimental design was intended to test previously proposed computational hypotheses of

hierarchical neural dynamics during visual face processing (Figure 1B). Briefly, these hypotheses pre-

dict how stimulus preference (in this instance, for typical versus atypical configurations of the face

parts) might change over time in a neural population (Figure 1B, middle panel): (1) simple spike-rate

adaptation predicts that initial rank-order selectivity (i.e. relative stimulus preference) will be largely

preserved (Figure 1B, dashed line) while neurons adapt their absolute response strength over time,
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Figure 1. Neural recordings and experimental design in face-selective subregions of the ventral visual stream. (A) Neurons were recorded along the

lateral convexity of the inferior temporal lobe spanning the posterior to anterior extent of IT (+0 to+20 mm AP, Horsely-Clarke coordinates) in two

monkeys (data from monkey one are shown). Based on prior work, face-selective sites (red) were operationally defined as those with a response

preference for images of frontal faces versus images of non-face objects (see Materials and methods). While these neurons were found throughout IT,

they tended to be found in clusters that mapped to previously identified subdivisions of IT (posterior, central, and anterior IT) and corresponded to

face-selective areas identified under fMRI in the same subjects (Issa and DiCarlo, 2012; Issa et al., 2013) (STS = superior temporal sulcus,

IOS = inferior occipital sulcus, OTS = occipitotemporal sulcus). (B) (top diagram) The three visual processing stages in IT lie downstream of early visual

areas V1, V2, and V4 in the ventral visual stream. (left) We designed our stimuli to focus on the intermediate stage pIT by seeking images of faces and

images of non-faces that would, on average, drive equally strong initial responses in pIT. Novel images were generated from an exemplar monkey face

by positioning the face parts in different positions within the face outline. This procedure generated both frontal face and non-face arrangements of the

face parts, and we identified 21 images (red and black boxes) that drove the mean, early (60–100 ms) pIT population response to > 90% of its response

to the intact face (first image in red box is synthesized whole face; compare to the second image which is the original whole face), and of these 21

images, 13 images contained atypical, non-face arrangements of the face parts. For example, images with an eye centered in the outline (black box, 3rd

and 4th rows) as opposed to the lateralized position of the eye in a frontal face (red box) have a global interpretation (‘cyclops’) that is not consistent

with a frontal face but still evoked strong pIT responses. Selectivity of neural sites (see Figure 3 and 4) for typical versus atypical face-part configuration

images was quantified using a d’ measure. (middle) Computational hypotheses of cortical dynamics make differing predictions about how neural

selectivity in pIT may evolve following images with similar local face features matched in their ability to evoke initial response but with different spatial

context (typical vs atypical part configuration of the face). (right) Predictions of how aIT would behave as an output stage building selectivity for images

of with face parts configured in the typical frontal face configuration through multiple stages of processing. (C) A population decoder, trained on

average firing rates (60–200 ms post image onset, linear SVM classifier) for typical frontal face versus atypical part configurations of the face parts in this

image subset, performed poorly in pIT on held-out trials of the same images (trial splits used so that the same images were shown in classifier training

(90% of trials) and testing (10% of trials)). However, the particular configuration (typical vs atypical) could be determined at above chance levels when

reading the cIT and aIT population responses.

DOI: https://doi.org/10.7554/eLife.42870.002
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(2) local normalization predicts that stronger responses are in some cases normalized to match

weaker responses based on population activity to specific dimensions (Carandini et al., 1997);

importantly, normalization is strongest for nuisance (non-coding) dimensions (e.g. low versus high

stimulus contrast) and in its idealized form would not alter selectivity along coding dimensions (e.g.

typical versus scrambled feature configurations) (Figure 1B, dashed line), (3) evidence accumulation

through temporal integration, winner-take-all through recurrent inhibition, or Bayesian inference

through top-down feedback mechanisms all qualitatively predict a similar or stronger response over

time for preferred features presented in the learned, typical face-part configuration versus presenta-

tion in an unexperienced atypical face-part configuration (Lee and Mumford, 2003) (Figure 1B, light

gray line), and (4) predictive coding posits that, for neurons that are coding error, their responses

would show the opposite trend being greater for stimuli containing their preferred features but pre-

sented in configurations inconsistent with predictions of a typical frontal face (Rao and Ballard,

1999) (Figure 1B, black line). Note, that error signaling is a qualitatively different computation than

normalization, as error coding predicts a decreased response along the coding dimension (typical vs

atypical configuration of features) whereas normalization would ideally not affect selectivity for typi-

cal versus atypical face-part configurations and only affect variation along orthogonal, nuisance

dimensions. Properly testing these predictions (no change, increased, or decreased response over

time to preferred face parts presented in typical versus atypical configurations) requires measure-

ments from the intermediate stages of the hierarchy as all of these models operate under the prem-

ise that the system builds and maintains a preference for typically configured face parts at the top of

the hierarchy (Figure 1B, right, and see Introduction). Thus, the intermediate stages (here pIT, see

Figure 1B) are most likely to be susceptible to confusions from typical/atypical face-part configura-

tions and thus be influenced by, for example, the top-down mechanisms posited in Bayesian infer-

ence and predictive coding where higher areas encoding faces generate predictions of the face

features and their locations that directly influence the responses of lower areas encoding those local

face features (Lee and Mumford, 2003; Rao and Ballard, 1999).

To ensure that we are observing purely visual predictions and not signals from other downstream

top–down mechanisms, it is important to consider the effects of potential arousal and attention sig-

nals. To limit the effect of arousal to surprising novel face-part configurations, we presented atypical

stimuli rapidly (100 ms on, 100 ms off) and in a randomly interleaved fashion with typical stimuli.

Given that endogenous attention mechanisms operate on timescales of hundreds of milliseconds

(Ward et al., 1996; Müller et al., 1998; Egeth and Yantis, 1997) and that the preceding stimulus is

not predictive of the next, dynamics observed during the first hundred milliseconds of the response

are likely not the result of neural mechanisms that are hypothesized to be at work in endogenous

attention.

Typical and atypical configurations of face parts driving similar initial
responses in pIT
Here, we chose to focus our key, controlled tests on pIT – an intermediate stage in the ventral

stream hierarchy, but the first stage within IT where neural specialization for face detection (i.e. face

vs non-face) has been reported (Grimaldi et al., 2016). Consistent with its intermediate position in

the ventral visual system, we had previously found that pIT face-selective neurons are not truly selec-

tive for whole faces but respond to local face features, specifically those in the eye region (Issa and

DiCarlo, 2012). Taking advantage of this prior result, we created face stimuli and similar but non-

facelike stimuli that were customized to challenge the face processing system in that each would

strongly drive pIT responses, thus forcing the higher IT stages to complete the discrimination

between face and challenging non-face images based on higher-level information. To generate these

challenging images, we systematically varied the positions of parts, in particular the eye, within the

face (Issa and DiCarlo, 2012) (see Materials and methods). This set included images that contained

face parts in positions consistent with a frontal view of a face or images that only differed in the rela-

tive spatial configuration of the face parts within the face outline (Figure 1B, left). Of the 82 images

screened, we identified 21 part configurations that each drove the pIT population response to >90%

of its response to a correctly configured whole face. Of those 21 images, 13 images were inconsis-

tent with the face-part configuration of a frontal face (Figure 1B, black box). For the majority of the

results that follow, we focus on comparing the neural responses to these 13 pIT-matched images

that could not have arisen from frontal faces (referred to hereafter as ‘atypical face-part
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configurations’) with the 8 images that could have arisen from frontal faces (referred to hereafter as

‘typical face-part configurations’). Again, we stress that these two groups of images were selected

to evoke closely matched initial pIT population activity.

Importantly, the pIT-matched images used here presented a more stringent test of face vs non-

face discrimination than prior work. Specifically, most prior work used images of faces and non-face

objects (‘classic images’) that contain differences across multiple dimensions including local contrast,

spatial frequency, and types of features (Tsao et al., 2006; Afraz et al., 2006; Moeller et al.,

2017; Sadagopan et al., 2017). Consistent with this, we found that the population decoding classifi-

cation accuracy of our recorded neural populations using these classic images (faces versus non-face

objects) is near perfect (>99% in pIT, cIT, and aIT, n = 30 sites per region). However, we found that

population decoding classification accuracy for the pIT-matched typical vs atypical face-part configu-

rations we used here was near chance level (50%) in pIT (Figure 1C, blue bar; by comparison, classifi-

cation accuracy for face versus non-face objects classification was 99.6% using the same pIT sites).

Further downstream in regions cIT and aIT, we found that the linear population decoding classifica-

tion of these early pIT response-matched typical vs atypical face-part configurations was well above

chance, suggesting that our pIT-matched face-part configuration detection challenge is largely

solved somewhere between pIT and aIT (Figure 1C).

Time course of responses in pIT for images with typical versus atypical
arrangements of the face parts
We next closely examined the pIT neural response dynamics. To do this, we defined a face-part con-

figuration preference value (d’; see Materials and methods) that measured each site’s average selec-

tivity for the typical face-part configurations relative to the atypical face-part configurations, and we

asked how a given site’s preference evolved over time (see alternative hypotheses in Figure 1B).

First, we present three example sites which were chosen based on having the largest selectivity

(absolute d’) in the late phase (100–130 ms post image onset). In particular, most standard interpre-

tations of face processing would predict a late phase preference for typical face-part configurations,

if any preference were to develop (d’ > 0). However, all three sites with the largest absolute d’ pref-

erence had evolved a strong late phase preference for the atypical face-part configurations (d’<0)

despite having had very similar, robust rising edge responses to both stimulus classes (response in

early phase from 60 to 90 ms, shows that we were able to achieve relatively well matched stimuli

from a feedforward perspective) (Figure 2, left column). Thus, these sites, which responded strongly

overall to both stimulus classes derived from faces consistent with the overall face preference of sites

in face-selective IT cortex (i.e. stronger responses to faces than to non-face objects; Issa and

DiCarlo, 2012; Tsao et al., 2006), nonetheless demonstrated an additional (smaller) late modulation

related to the configuration of the face parts. A late response modulation for atypical over typical

face-part configurations was not restricted to the example sites as a majority of pIT sites (66%)

responded more strongly to atypical over typical face-part configurations in the late response phase

(prefer typical frontal face-part arrangement: 60–90 ms = 66% vs 100–130 ms = 34%; p = 0.000,

n = 115) (Figure 3B, blue bars) even though almost all sites preferred faces over non-face objects

throughout this time-course (60–90 ms = 98% vs 100–130 ms = 90%; p = 0.009, n = 115).

Next, we focused on the small but significant modulation of responses encoding the face-part

configuration. Though this modulation can be relatively small compared to the absolute face

response, the dynamics of face-part configuration selectivity (no change, increasing, decreasing)

across the pIT population could provide insights into competing models of how additional, recurrent

operations might modulate face processing (Figure 1B). In the adaptation and normalization mod-

els, we would expect no change in the average population selectivity, and the evidence accumula-

tion, winner-take-all, or Bayesian inference models predict an increase in face configuration

selectivity over the population over time. Instead, we found that many sites significantly decreased

their typical face-part configuration preference over time similar to the three example sites. Of the

51 sites in our pIT sample that showed a significantly changing preference for typical face-part con-

figurations over time (p < 0.01 criterion for significant change in d’), 84% of these sites showed a

decreasing preference (n = 43 of 51 sites, p < 10̂�6, binomial test, n = 115 total sites) (Figure 3A,

left column, light gray vs black lines). This surprising trend – decreasing relative response for typical

face-part configurations versus atypical face-part configurations – was observed in both monkeys

when analyzed separately (pM1 = 0.000, pM2 = 0.002, nM1 = 43, nM2 = 72 sites; Figure 4A).
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Specifically, sites still behaved like classic face-selective sites (responded more to faces than non-

face objects) even in the late phase of the response (median d’, 100–130 ms, faces vs non-face

objects = 0.96 ± 0.06, n = 115 sites); however, we observed an additional, comparatively smaller

response modulation encoding configuration information whereby typical face-part configurations
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Figure 2. Responses in example sites to face-like images with typical and atypical face-part configurations. The three sites with the highest selectivity in

the late response phase in each region are shown (pIT, cIT, and aIT; left, middle, and right columns, respectively) (d’ selectivity measured in a 100–130

ms window, gray shaded region shown in bottom, left panel). While the three aIT sites (right column) demonstrated a late phase signal for the matched

typical face context, the three pIT sites demonstrated the opposite preference in their late phase (100–130 ms) responses (red line = mean response of

8 images shown in Figure 1B red box, and black line = mean response of 13 images shown in Figure 1B black box).
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windows. Sites are grouped based on region (pIT, cIT, aIT) and whether they showed a significant change in selectivity from early to late time windows

(light gray = increased preference, black = decreased preference, and dark gray = no change in preference for typical versus atypical face-part

Figure 3 continued on next page
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drove weaker responses relative to atypical face-part configurations across the population in the late

response phase (median d’, 100–130 ms, typical vs atypical face-part configurations = �0.12 ± 0.03,

n = 115 sites). The observed trend for decreasing relative selectivity for typical face-part configura-

tions over time over the population was driven by decreasing firing rates to the face images contain-

ing normally arranged face parts. Responses to these images were weaker by 18% on average in the

late phase of the response compared to the early phase (Drate (60–90 vs 100–130 ms) = �18% ±

4%, p = 0.000; n = 7 images) while responses to the images with atypical spatial arrangements of

face parts – also capable of driving high early phase responses – did not experience any firing rate

reduction in the late phase of the response (Drate (60–90 vs 100–130 ms) = 2 ± 1%, p = 0.467;

n = 13 images). The relative speed of this decreasing preference for typical face-part configurations

Figure 3 continued

configurations, significance tested at p < 0.01 level; example sites from Figure 2 are plotted using thicker, darker lines). Many sites in pIT and cIT

showed a decreasing signal for the typical face-part configuration context versus atypical configuration contexts over time (black lines, middle row, left

and center panels). In contrast, no sites in aIT had this dynamic (middle row, right panel). (B) The fraction of sites whose responses showed a preference

for images of typical, face-like arrangements of the face parts in pIT (blue), cIT (green) and aIT (red) in the early (60–90 ms) and late (100–130 ms) phase

of the response. Note that, in the late phase of the response, most pIT neurons responded more strongly to atypical arrangements of face parts. (C)

Selectivity measured for images driving similar responses within a site. This procedure ensured matched initial responses on a site-by-site basis rather

than using a fixed set of images based on the overall population response (i.e. the fixed image set of Figure 1B; here, the initial d’ for 60–90 ms is

close to zero when images are selected site by site). Although initial response differences were near zero when using site based image selection, a late

phase signal that was stronger for atypical face-part configurations still emerged in pIT and cIT but not in aIT similar to the decreasing selectivity profile

observed when using a fixed image set for all sites.

DOI: https://doi.org/10.7554/eLife.42870.004
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– starting 30 milliseconds after response onset – argues against arousal or attention mechanisms as

those phenomena occur over long timescales, and our stimuli were randomized to avoid top-down

priming effects for typical or atypical images.

The above observation of decreasing preference for typical face-part configurations over the pIT

population seemed most consistent with predictions of error coding models (i.e. a conflict between

the features represented locally and mismatched late-arriving predictions of those features from the

face context), but one potential confound was that initial responses to typical and challenging, atypi-

cal configurations containing similar local features were not perfectly matched across the population

(recall that we only required typical and atypical face-part configuration images to drive a

response >90% of the whole face response). As a result, initial selectivity was non-zero (d’=0.11,

n = 115 sites). This residual preference for the typical face-part configuration images may be small,

but if this residual face selectivity is driven by nuisance dimensions, for example excess stimulus con-

trast in the typical face-part configuration class relative to the atypical face-part configuration class,

then the typical configuration class may have experienced stronger activity dependent adaptation or

normalization resulting in a decreasing typical face-part configuration preference over time. To more

adequately limit general activity dependent mechanisms that could lead to decreasing responses to

typical face-part configurations, we performed control analyses where initial activity was tightly

matched per site or where the number of parts was matched across images.

Controls in pIT for firing rate and low-level image variation
To strictly control for the possibility that simple initial firing rate differences could predict the

observed phenomenon, we re-computed selectivity after first matching initial responses site-by-site.

For this analysis, images were selected on a per site basis to evoke similar initial firing rates (images

driving initial response within 25% of synthetic whole face response for that site, at least 5 images

required per class). This image selection procedure virtually eliminated any differences in initial

responses between the images of typical and atypical face-part configurations and hence any firing

rate difference driven by potential differences in nuisance parameters when rearranging the face

parts (Figures 3C and 60–90 ms), yet we still observed a significant drop in preference for images

with typical frontal face-part arrangements versus atypical face-part arrangements in pIT

(Dd’ = �0.10 ± 0.03, p = 0.001, n = 77) (Figure 3C, blue line). Thus, the remaining dependence of fir-

ing rate dynamics on the image class and not on initial response strength argued against an exclu-

sively activity based explanation to account for decreasing neural responses to typically configured

face parts over time. Further arguing against this activity-dependent hypothesis, we found that the

pattern of late phase population firing rates in pIT across images could not be significantly predicted

from early phase pIT firing rates for each image (rpIT early, pIT late = 0.07 ± 0.17, p = 0.347; n = 20

images).

Thus far, we have performed analyses where images from the typical and atypical face-part con-

figuration classes were similar in their initially evoked response which equated images at the level of

neural activity but produced images varying in the number of parts. An alternative is to match the

number of face parts between the typical and atypical configuration classes as another means of lim-

iting the differences in nuisance dimensions such as the contrast, spatial frequency and retinal posi-

tion of energy across images (see examples in Figure 4B). When we recomputed selectivity across

subsets of images containing a matched number of one, two, or four parts (n = 5, 30, and 3 images,

respectively), we still observed that pIT face selectivity decreased. For all three image subsets con-

trolling the number of face parts, d’ of the pIT population began positive on average in the sampled

pIT population (i.e. preferred frontal face-part arrangements in 60–90 ms post-image onset) (median

d’ for 60–90 ms = 0.13 ± 0.05, 0.05 ± 0.02, 0.33 ± 0.09 for one, two, and four parts) and significantly

decreased in the next phase of the response (100–130 ms post-image onset) becoming negative on

average (median d’ for 100–130 ms: �0.27 ± 0.06,–0.14 ± 0.02,–0.04 ± 0.12; one, two, four parts:

p = 0.000, 0.000, 0.004, for d’ comparisons between 60–90 ms and 100–130 ms, n = 115, 115, 76

sites) (Figure 4B). A similar decreasing face-part configuration selectivity profile was observed when

we re-tested single part images at smaller (3o) and larger (12o) image sizes suggesting a dependence

on the relative configuration of the parts and not on their absolute retinal location or absolute retinal

size (median d’ for 60–90 ms vs 100–130 ms: three degrees = 0.51 ± 0.09 vs �0.29 ± 0.14, twelve

degrees = 0.07 ± 0.14 vs �0.11 ± 0.14; n = 15; p = 0.000, 0.025, 0.07) (Figure 4C). Thus, we suggest

that the dynamic in pIT of a decreasing population selectivity for typical face-part configurations is a
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fairly robust phenomenon specific to the face versus non-face configuration dimension as this

dynamic persisted even when limiting potential variation across nuisance dimensions.

Time course of responses in aIT and cIT for images with typical versus
atypical arrangements of face parts
While previous studies have suggested the presence of putative error-like signals in the ventral visual

cortex broadly agreeing with our present observations, none of these studies have recorded under

the same experimental conditions using the same stimuli from areas that may provide the necessary

prediction signals for computing the errors, leaving open the question of whether these signals are

generated within the same area or could arrive from higher cortical areas (Rao and Ballard, 1999;

Schwiedrzik and Freiwald, 2017). Here, we recorded from the anterior face-selective regions of IT

which are furthest downstream of pIT and reflect additional stages of feedforward processing that

could build selectivity for typical face-part configurations, a prerequisite for generating face predic-

tions (see block diagram in Figure 1B). Indeed, in our aIT sample, the three sites with the greatest

selectivity (absolute d’) in the late response phase (100–130 ms) all displayed a preference for typical

frontal face-part configurations (d’ > 0) (Figure 2, right column). Also, in contrast to the dynamic

selectivity profiles observed in many pIT sites, 98% of aIT sites (39 of 40) did not significantly change

their relative preference for typical versus atypical configurations of the face parts from their initial

feedforward response (p < 0.01 criterion for significant change at the site level) (Figure 3A, right col-

umn, bottom row, dark gray sites). Rather, we observed a stable selectivity profile over time in aIT

(median d’: 60–90 ms = 0.13 ± 0.03 vs 100–130 ms = 0.17 ± 0.03, p = 0.34, n = 40 sites). As a result,

the majority of anterior sites preferred images with typical frontal configurations of the face parts in

the late phase of the response (prefer typical face-part configuration: 60–90 ms = 78% of sites vs

100–130 ms = 78% of sites; p = 0.451, n = 40 sites; Figure 3B, red bars) despite only a minority

(34%) of upstream sites in pIT preferring these images in their late response. Thus, spiking responses

of individual aIT sites were as expected from a computational system whose purpose is to detect

faces, as previously suggested (Freiwald and Tsao, 2010). Furthermore, the responses of aIT sites in

this relatively early response window (60–130 ms post image onset) were too rapid and in the oppo-

site direction (prefer typical face-part configurations) to be accounted for by late-arriving arousal or

attention signals to the novel, atypical face-part configuration stimuli. In cIT whose anatomical loca-

tion is intermediate to pIT and aIT, we observed many sites with decreasing selectivity (Figure 2 and

3A, middle columns), a dynamic that persisted even when we tightly matched initial responses on a

site by site basis (Figure 3C, green line). The overall stimulus preference in cIT was intermediate to

that of pIT and aIT (Figure 3B) consistent with the intermediate position of cIT in the IT hierarchy.

To further test whether downstream areas cIT and aIT could be candidates for the putative pre-

diction signals underlying face part prediction errors in pIT, we examined whether early response

patterns in cIT and aIT were correlated to the later response in pIT. Interestingly, we found that the

turning profiles across images in the early response phases of cIT and aIT were significant predictors

of late phase activity in pIT (rcIT early, pIT late = -0.52 ± 0.11, p = 0.000; raIT early, pIT late = -0.36 ± 0.14,

p = 0.012; npIT = 115, ncIT = 70, naIT = 40 sites; n = 20 images), even better predictors than early

phase activity in pIT itself (rpIT early, pIT late = 0.07 ± 0.17, p = 0.347). That is, for images that pro-

duced high early phase responses in cIT and aIT, the following later phase responses of units in the

lower level area (pIT) tended to be low, consistent with error coding models which posit that feed-

back from higher areas (in the form of predictions of the face features) would contribute to the

decreasing activity observed in lower areas encoding those face features.

Computational models of neural dynamics in IT
We next proceeded to formalize the conceptual ideas introduced in Figure 1B and build neurally

mechanistic, dynamical models of gradually increasing complexity to determine the minimal set of

assumptions that could capture our empirical findings of non-trivial, dynamic selectivity changes dur-

ing face detection across face-selective subregions in IT. This modeling effort is only intended to

present at least one formal, working model of the observed population dynamics in IT which could

complement previously reported phenomena in the literature that lacked a quantitative modeling

framework. We submit that our model will inherently be underconstrained given the present, limited

data. Much further circuit dissection work would need to be done to identify the sources of dynamics
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in pIT as these could arrive from downstream areas (as suggested by our correlative data between

cIT/aIT early responses and pIT late responses) or could be shaped by lateral recurrences in pIT or

both. Nonetheless, we leverage normative modeling principles for feedforward hierarchal processing

and top-down hierarchical prediction (e.g. predictive coding, hierarchical Bayesian inference) to

define at least one model class that can account for our data.

Previous functional and anatomical data show that the face-selective subregions in IT are con-

nected forming an anterior to posterior hierarchy and show that pIT serves as the primary input into

this hierarchy (Moeller et al., 2008; Freiwald and Tsao, 2010; Grimaldi et al., 2016). Thus, we eval-

uated dynamics in different hierarchical architectures using a linear dynamical systems modeling

framework where pIT, cIT, and aIT act as sequential stages of processing (network diagrams in Fig-

ure 5 and see Materials and methods). A core principle of feedforward ventral stream models is that

object selectivity is built by stage-wise feature integration in a manner that leads to relatively low

dimensional representations at the top of the hierarchy abstracted from the high-dimensional input

layer. We were interested in how signals temporally evolve across a similar architectural layout. We

used the simplest feature integration architecture where a unit in a downstream area linearly sums

the input from units in an upstream area, and we stacked this computation to form three layer net-

works (Figure 5). This simple, generic feedforward encoding model conceptualizes the idea that dif-

ferent types of evidence, local and global (i.e. information about the parts and the relative spatial

arrangement of parts), have to converge and be integrated to separate typical from atypical face-

part configurations in our image set. We used linear networks as monotonic nonlinearities can be

readily accommodated in our framework (Seung, 1997; Rao and Ballard, 1999; also see Figure 6).

Importantly, we used a simple encoding scheme as our goal was not to build full-scale deep neural

network encoding models of image representation (Yamins et al., 2014) but to bring focus to an

important biological property that is often not considered in deep nets, neural dynamics.

We implemented a range of ideas previously proposed in the literature. The functional implica-

tions of these ideas were highlighted in Figure 1B; at a mechanistic level, these functional properties

can be directly realized via different recurrent processing motifs between neurons (Figure 5B, base

feedforward model was augmented with recurrent connections to form new models). We focus on

error encoding models since the observed neural phenomena in pIT and their relationship to

responses in cIT and aIT suggested the generation of a prediction error of pIT preferred local fea-

tures in late phase pIT responses. Here, we asked whether a dynamical systems implementation of

error coding in a hierarchical prediction network could account for the temporal response patterns

observed neurally. To constrain our choice of an error coding model, we took a normative approach

minimizing a quadratic reconstruction cost between stages (top stages predict their input stages) as

the classical reconstruction cost is at the core of an array of hierarchical generative models including

hierarchical Bayesian inference (Lee and Mumford, 2003), Boltzmann machines (Ackley et al.,

1985), analysis-by-synthesis networks (Seung, 1997), sparse coding (Olshausen and Field, 1996),

predictive coding (Rao and Ballard, 1999), and autoencoders in general (Rifai et al., 2011). Opti-

mizing a quadratic loss results in feedforward and feedback connections that are symmetric – reduc-

ing the number of free parameters – such that inference on the represented variables at any

intermediate stage is influenced by both bottom-up sensory evidence and current top-down inter-

pretations. Critically, a common feature of this large model family is the computation of between-

stage error signals via feedback, which is distinct from state-estimating model classes (i.e. feedfor-

ward models) that do not compute or propagate errors. A dynamical implementation of such a net-

work uses leaky integration of error signals which, as shared computational intermediates, guide

gradient descent of the values of the represented variables to a previously learned target value

(Dactivity of each neuron => online inference) or descend the connection weights to values that give

the best future behavior (Dsynaptic strengths => offline learning), here defined as an unsupervised

reconstruction goal (similar results were found using other goals and networks such as supervised

discriminative networks; see Figure 6).

We found that the dynamics of error signals in our hierarchical model naturally displayed a strong

decrease of selectivity in a sub-component of its first processing stage – qualitatively similar behavior

to the selectivity decrease that we observed in many pIT and cIT neural sites (Figure 5A, second col-

umn, blue and green curves). These error signals integrate converging state signals from two stages

– one above (prediction) and one below (sensory evidence). The term ‘error’ is thus meaningful in

the hidden processing stages where state signals from two stages can converge. The top nodes of a
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hierarchy receive little descending input and hence do not carry additional errors with respect to the

desired computation; rather, top nodes convey the face predictions that influence errors in bottom

nodes. This behavior in the higher processing stages is consistent with our observation of explicit

representation of faces in aIT in all phases of the response (Figures 2–3, aIT data) and with similar

observations of decodable identity signals by others in all phases of aIT responses for faces

(Meyers et al., 2015) and objects (Hung et al., 2005; Majaj et al., 2015). We also found similar

error dynamics when using a simpler two-layer network as opposed to three layers suggesting that

these error signal dynamics along with prediction signals emerge even in the simplest cascaded

architecture (Figure 6).
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Figure 5. Computational modeling of neural dynamics in IT. (A) Three stage neural networks with recurrent dynamics were constructed to model neural

signals measured in pIT, cIT, and aIT corresponding to the first (blue), second (green), and third (red) model processing stages (top row; see

Materials and methods). Models received four inputs (gray) into four hidden stage units (blue) which sent feedforward projections that converged onto

two units in the next layer (green) (self-connections reflecting leak currents are not shown here for clarity). State (feature) coding models generally

showed increasing selectivity over time from hidden to output layers as exemplified by the feedforward model (left) and did not demonstrate the

strong decrease of stimulus preference in their hidden processing stage as observed in the pIT and cIT neural population (blue and green lines,

feedforward model shown). However, the neurons coding errors in a feedback-based hierarchical model did show a strong decrease of stimulus

preference in the hidden processing stage (second column; reconstruction errors instead of the states were fit directly to the data). This model which

codes the error signals (filled circles) also codes the states (open circles). Far right, population averaged neural selectivity profile for difference between

typical, frontal versus atypical face-part arrangements (normalized by the mean population response to the whole face) used in model fitting (best

fitting feedforward and error coding models are shown at left). (B) Goodness of fit of all three stage models tested to population averaged selectivity

profiles (dashed lines represent mean and standard error of reliability of neural data as estimated by bootstrap resampling). Besides the base

feedforward architecture, additional excitatory feedback (Bayesian inference) or lateral inhibitory (lateral inhibition or normalization) connections

between units were implemented to produce recurrent dynamics. The goodness of fit to the population averaged neural data (far right in (A)) of the

state coding models (first five bars) and of the reconstruction error coding model (last bar) are shown.
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For control comparisons, we also implemented a range of feature coding models beginning with

a basic feedforward model and augmenting it with lateral connections (winner-take-all lateral inhibi-

tion and normalization models) or feedback connections (hierarchical Bayesian

inference) (Carandini et al., 1997; Seung, 1997). However, all of these state coding control models

failed to reproduce the observed neural dynamics across the ventral visual hierarchy. Rather, the

selectivity of these models simply increased to a saturation level set by the leak term (shunting inhi-

bition) in the system as in the strictly feedforward model (Figure 5A, first column). That adding nor-

malization proved insufficient to generate the observed neural dynamics can be explained by the

fact that the normalized response to a stimulus cannot easily fall below the response to a stimulus

that was initially similar in strength. Thus, a decreasing average preference for a stimulus across a

population of cells (i.e. Figures 2–4, pIT data) for similar levels of average input is difficult when only

using a basic normalization model mediated by surround (within-stage) suppression.

Discussion
We have measured neural responses during a difficult discrimination between images with typical

and atypical face-part configurations across the IT hierarchy and demonstrated that the population

preference for normally configured face parts in the intermediate (a.k.a hidden) processing stages

decreases over time – that is population responses at lower levels of the hierarchy (pIT and cIT) sig-

nal deviations of their preferred features from their expected configuration whereas the top level
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Figure 6. Comparison of variants of error coding hierarchical models that use different algorithms for online inference. (A) Additional varieties of error

computing networks can be generated by varying the online inference algorithm that they use. In one case, inference does not utilize top-down

information between stages (classic error backpropagation; between-stage feedback connections shown are not used in these networks during

runtime). On the other hand, between-stage feedback can be used to optimize online estimates such as in more general forms of error

backpropagation and predictive coding. We approximated these two extremes by including a parameter (ktd, see Materials and methods) controlling

the relative weighting of bottom-up (feedforward) and top-down (feedback) evidence during online inference (first and second panels). We found that

top-down inference between stages was not necessary to produce the appropriate error signal dynamics, and ktd was equal to zero (similar to the lack

of inference in classic error backpropagation) in our best fitting two-layer (first column) and three-layer (Figure 5A, second column) models although

models with ktd ~ 1 also performed well (second column). Models can also differ in their goal (cost function) which directly impacts the error signals

computed (equations in top row). Under a nonlinear reconstruction goal (emulating the nonlinear nature of spiking output), the resulting error signals

were still consistent with our data (third column). A simple sigmoidal nonlinearity, however, did lead to additional details present in our neural data

such as a rapid return of stimulus preference to zero in the hidden layer. When we tested a discriminative, construction goal more consistent with a

supervised learning setting where high-dimensional bottom-up responses simply have to match a low-dimensional downstream target signal as in

classification tasks, we found that the errors of construction did not match the data as well as reconstruction errors (compare fourth column to first three

columns). (B) Goodness of fit to population neural data for all two stage models including two layer versions of state (feature) coding controls (same

format as Figure 5B).
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(aIT) rapidly developed and then maintained a preference for natural, frontal face-part configura-

tions. The relative speed of selectivity changes in pIT makes high-level explanations based on fixa-

tional eye movements or shifts in attention (e.g. from behavioral surprise to unnatural arrangements

of face parts) unlikely as saccades and attention shifts occur on slower timescales (hundreds of

milliseconds) (Egeth and Yantis, 1997; Müller et al., 1998; Ward et al., 1996) than the ~30 ms

dynamical phenomena we observed. The presence of stronger responses to typical than to atypical

face-part configuration images in aIT further argues against general arousal effects which would

have predicted stronger not weaker responses to surprising, atypical images in aIT. Rather, the rapid

propagation of neural signals over tens of milliseconds suggested intracortical processing within the

ventral visual stream in a manner that was not entirely consistent with a pure feedforward model,

even when we included strong nonlinearities in these models such as normalization and even when

we stacked these operations to form more complex three stage models. However, augmenting the

feedforward model so that it represented the prediction errors generated during hierarchical proc-

essing of atypical configurations produced the observed neural dynamics and hierarchical pattern of

signal propagation (Figures 5–6). This view argues that many IT neurons code error signals. How-

ever, the exact mechanism for producing prediction errors remains to be determined. While we

showed that a recurrent model could recapitulate the observed signals, how this model maps to the

IT network is unclear. Recurrence could be implemented by a circuit within pIT which computes the

predictions that lead to prediction errors within the same region. Whether the error computation is

done internally in pIT or depends on downstream sources such as cIT or aIT can be directly tested

by causal knock-outs of cIT or aIT.

Comparison to previous neurophysiology studies in IT
Multiple visual neurophysiology studies have shown evidence of neural responses consistent with

error signals. This includes the seminal predictive coding study on end-stopping in V1 (Rao and Bal-

lard, 1999). More recently, studies in IT have used pairing of images over time to create sequences

with predictable temporal structure and found evidence of putative error signals when those statisti-

cally exposed temporal predictions were violated (Meyer et al., 2014; Schwiedrzik and Freiwald,

2017). Our work expands those IT findings in three directions. First, we revealed error coding

dynamics that are naturally present in the system without using statistical exposure or behavioral

training to induce signals. Second, errors depended on the spatial statistics of the features – rather

than depending on temporal statistics – which may be more directly related to native, spatial form

processing in IT. Third and perhaps most importantly, we identified a putative source of face predic-

tion signals in downstream IT by recording from multiple areas in the same experiment and showing

that early signals in anterior areas were (negatively) correlated with late signals in pIT. Together,

these advances suggest a more definitive role of error signaling in natural, online vision. Formalizing

this claim, we found that the pattern of observed dynamics in pIT, cIT, and aIT were indeed difficult

to account for quantitatively when using feature coding models but could be computationally mod-

eled at a population level using a simple error coding model (Figure 5). Extensions of our dynamical

modeling framework to more realistic large-scale networks could be useful for future studies of IT

response dynamics.

Our suggestion that many IT neurons code errors is consistent with the observation of strong

responses to extremes in face space (Leopold et al., 2006) providing an alternative interpretation to

the prior suggestion that cIT neurons are not tuned for typical faces but are instead tuned for atypi-

cal face features (i.e. extreme feature tuning) (Freiwald et al., 2009). In that prior work, the

response preference of each neuron was determined by averaging over a long time window (~200

ms). By looking more closely at the fine time scale dynamics of the IT response, we suggest that this

same extreme coding phenomenon can instead be interpreted as a natural consequence of networks

that have an actual tuning preference for face features in typical configurations (as evidenced by an

initial, feedforward response preference for typical frontal faces in pIT, cIT, and aIT; Figure 3B) but

that also compute error signals with respect to that preference. Under the present hypothesis, some

IT neurons are preferentially tuned to typical spatial arrangements of face features, and other IT neu-

rons are involved in coding errors with respect to those typical arrangements. We speculate that

these intermixed state estimating and error coding neuron populations are both sampled in stan-

dard neural recordings of IT, even though only state estimating neurons are truly reflective of the

tuning preferences of that IT processing stage. The precise fractional contribution of errors to total
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neural activity is difficult to estimate from our data. Under the primary image condition tested, not

all sites significantly decreased their selectivity (~60% did not change their selectivity). We currently

interpret these sites as coding state (feature) estimates (Figure 3A, light and dark gray lines in top

and bottom rows, respectively). Alternatively, at least some of the non-reversing sites might be

found to code errors under other image conditions than the one that we tested. Furthermore, in our

primary image condition, selectivity decreases only accounted for ~15% of the overall spiking. How-

ever, at a computational level, the absolute contribution of error signals to spiking may not be the

critical factor as even a small relative contribution may have important consequences in the network.

Comparison across dynamical models of neural processing
Our goal was to test a range of existing recurrent models by recording neural dynamics across multi-

ple cortical stages which provided stronger constraints on computational models than fitting neural

responses from only one area as in prior work (Carandini et al., 1997; Rao and Ballard, 1999). Cru-

cially, we found that the multi-stage neural dynamics observed in our data could not be adequately

fit by only using lateral recurrences such as adaptation, lateral inhibition, and standard forms of nor-

malization (Figure 5B). These results did not change when we made our simple networks more com-

plex by adding more stages (compare Figure 5 versus Figure 6) or by using more realistic model

units with monotonic nonlinearities similar to a spiking nonlinearity (data not shown). Indeed, we spe-

cifically chose our stimuli to evoke similar levels of within stage neural activity to limit the effects of

known mechanisms that depend on activity levels through lateral interactions (e.g. adaptation, nor-

malization), and we fully expect that these activity dependent mechanisms would operate in parallel

to top-down, recurrent processes during general visual processing. We emphasize that we only

tested the standard form of normalization as originally proposed, using within stage pooling and

divisive mechanisms (Carandini et al., 1997). Since that original mechanistic formulation, normaliza-

tion has evolved to become a term that broadly encapsulates many forms of suppression phenom-

ena and can include both lateral interactions within an area and feedback interactions from other

areas (Nassi et al., 2014; Coen-Cagli et al., 2015). Thus, while our results do not follow from the

original mechanistic form of normalization, they may yet fall under normalization more broadly con-

strued as a term for suppression phenomena (error coding would require a similar suppressive com-

ponent). Here, we have provided a normative model for how top-down suppression would follow

from the well-defined computational goals of many hierarchical neural network models. Finally, we

clarify that any top-down interactions instantiated in coding errors need not originate in other areas

but could happen within the same area (e.g. layer 2/3 predictions interacting with layer 4) which

could be viewed as a local feedback interaction with respect to the whole network, and this is a test-

able mechanistic hypothesis that is not ruled out by the present work.

Computational utility of coding errors in addition to states
The present study provides evidence that errors are not only computed, but that they might be

explicitly encoded in spiking rates. We emphasize that this result at the level of population neural

dynamics was robust across choices of cost function; we tested models with different unsupervised

and supervised performance errors (reconstruction, nonlinear reconstruction, and discriminative) and

found similar population level error signals across these networks (Figure 6). Thus, errors as gener-

ally instantiated in the state-error coding hierarchical model family provide a good approximation to

IT population neural dynamics. In error-computing networks, errors provide control signals for guid-

ing learning giving these networks additional adaptive power over basic feature estimation net-

works. This property helps augment the classical, feature coding view of neurons which, with only

feature activations and Hebbian operations, does not lead to efficient learning in the manner pro-

duced by gradient descent using error backpropagation (Rumelhart et al., 1986). Observation of

error signals may provide insight into how more intelligent unsupervised and supervised learning

algorithms such as backpropagation could be plausibly implemented in the brain. A potentially

important contribution of this work is the suggestion that gradient descent algorithms are facilitated

by using an error code so that efficient learning is reduced to a simple Hebbian operation at synap-

ses and efficient inference is simply integration of inputs at the cell body (see Equation 10 and text

in Materials and methods). This representational choice, to code the computational primitives of
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gradient descent in spiking activity, would simply leverage the existing biophysical machinery of neu-

rons for inference and learning.

Materials and methods

Animals and surgery
All surgery, behavioral training, imaging, and neurophysiological techniques are identical to those

described in detail in previous work (Issa and DiCarlo, 2012). Two rhesus macaque monkeys

(Macaca mulatta) weighing 6 kg (Monkey 1, female) and 7 kg (Monkey 2, male) were used. A surgery

using sterile technique was performed to implant a plastic fMRI compatible headpost prior to behav-

ioral training and scanning. Following scanning, a second surgery was performed to implant a plastic

chamber positioned to allow targeting of physiological recordings to posterior, middle, and anterior

face patches in both animals. All procedures were performed in compliance with National Institutes

of Health guidelines and the standards of the MIT Committee on Animal Care and the American

Physiological Society.

Behavioral training and image presentation
Subjects were trained to fixate a central white fixation dot during serial visual presentation of images

at a natural saccade-driven rate (one image every 200 ms). Although a 4o fixation window was

enforced, subjects generally fixated a much smaller region of the image (<1o) (Issa and DiCarlo,

2012). Images were presented at a size of 6o except for control tests at 3o and 12o sizes

(Figure 4C), and all images were presented for 100 ms duration with 100 ms gap (background gray

screen) between each image. Images were presented in a randomly interleaved fashion at this rate

of 5 images per second, so subjects could not predict the image class (e.g. face vs non-face or typi-

cal vs atypical face-part configuration) and were more likely to engage automatic processing of the

visual stimuli. Up to 15 images were presented during a single fixation trial, and the first image pre-

sentation in each trial was discarded from later analyses. Five repetitions of each image in the gen-

eral screen set were presented, and ten repetitions of each image were collected for all other image

sets. The screen set consisted of a total of 40 images drawn from four categories (faces, bodies,

objects, and places; 10 exemplars each) which was used to derive a measure of face versus non-face

object selectivity (faces versus bodies, objects, and places grouped together).

Following the screen set testing, some sites were tested using an image set containing images of

face parts presented in different combinations and positions (Figure 1B, left panel). We first seg-

mented the face parts (eye, nose, mouth) from a monkey face image. These parts were then blended

using a Gaussian window, and the face outline was filled with pink noise to create a continuous back-

ground texture. A face part could appear on the outline at any one of nine positions on an evenly

spaced 3 � 3 grid. Although the number of possible images is large (49 = 262,144 images), we chose

a subset of these images for testing neural sites (n = 82 images). Specifically, we tested the following

images: the original whole face image, the noise-filled outline, the whole face reconstructed by

blending the four face parts with the outline, all possible single part images where the eye, nose, or

mouth could be at one of nine positions on the outline (n = 3 � 9 = 27 images), all two part images

containing a nose, mouth, left eye, or right eye at the correct outline-centered position and an eye

tested at all remaining positions (n = 4*8–1 = 31 images), all two part images containing a correctly

positioned contralateral eye while placing the nose or mouth at all other positions (n = 2*8–2 = 14

images), and all correctly configured faces but with one or two parts missing besides those already

counted above (n = 4 + 3 = 7 images). The particular two-part combinations tested were motivated

by prior work demonstrating the importance of the eye in early face processing (Issa and DiCarlo,

2012), and we sought to determine how the position of the eye relative to the outline and other

face parts was encoded in neural responses. The three and four part combinations were designed to

manipulate the presence or absence of a face part for testing the integration of face parts, and in

these images, we did not vary the positions of the parts from those in a naturally occurring face. In a

follow-up test on a subset of sites, we permuted the position of the four face parts under the con-

straint that they still formed the configuration of a naturally occurring face (i.e. preserve the ‘T’ con-

figuration, n = 10 images; Figure 4B). We tested single part images at 3o and 12o sizes in a subset

of sites (n = 27 images at each size; Figure 4C).
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MR imaging and neurophysiological recordings
Both structural and functional MRI scans were collected in each monkey. Putative face patches were

identified in fMRI maps of face versus non-face object selectivity in each subject. A stereo microfocal

x-ray system (Cox et al., 2008) was used to guide electrode penetrations in and around the fMRI

defined face-selective subregions of IT. X-ray based electrode localization was critical for making

laminar assignments since electrode penetrations are often not perpendicular to the cortical lamina

when taking a dorsal-ventral approach to IT face patches. Laminar assignments of recordings were

made by co-registering x-ray determined electrode coordinates to MRI where the pial-to-gray mat-

ter border and the gray-to-white matter border were defined. Based on our prior work estimating

sources of error (e.g. error from electrode tip localization and brain movement), registration of elec-

trode tip locations to MRI brain volumes has a total of <400 micron error which is sufficient to distin-

guish deep from superficial layers (Issa et al., 2013). Multi-unit activity (MUA) was systematically

recorded at 300 micron intervals starting from penetration of the superior temporal sulcus such that

all sites at these regular intervals were tested with a screen set containing both faces and non-face

objects, and a subset of sites that were visually driven were further tested with our main image set

manipulating the position of face parts. Although we did not record single-unit activity, our previous

work showed similar responses between single-units and multi-units on images of the type pre-

sented here (Issa and DiCarlo, 2012), and our results are consistent with observations in previous

single-unit work in IT (Freiwald et al., 2009). Recordings were made from PL, ML, and AM in the

left hemisphere of monkeys 1 and 2 and additionally from AL in monkey 2. AM and AL are pooled

together in our analyses forming the aIT sample while PL and ML correspond to the pIT and cIT sam-

ples, respectively.

Neural data analysis
The face patches were physiologically defined in the same manner as in our previous study (Issa and

DiCarlo, 2012). Briefly, we fit a graded 3D sphere model (linear profile of selectivity that rises from

a baseline value toward the maximum at the center of the sphere) to the spatial profile of face versus

non-face object selectivity across our sites. We tested spherical regions with radii from 1.5 to 10 mm

and center positions within a 5 mm radius of the fMRI-based centers of the face patches. The result-

ing physiologically defined regions were 1.5 to 3 mm in diameter. Sites which passed a visual

response screen (mean response in a 60–160 ms window >2*SEM above baseline for at least one of

the four categories in the screen set) were included in further analysis. All firing rates were baseline

subtracted using the activity in a 25–50 ms window following image onset averaged across all repeti-

tions of an image. Finally, given that the visual response latencies in monkey two were on average

13 ms slower than those in monkey one for corresponding face-selective regions, we applied a single

latency correction (13 ms shift to align monkey 1 and monkey 2’s data) prior to averaging across

monkeys. This was done so as not to wash out any fine timescale dynamics by averaging. Similar

results were obtained without using this latency correction as dynamics occurred at longer time-

scales (~30 ms). This single absolute adjustment was more straightforward than the site-by-site

adjustment used in our previous work (Issa and DiCarlo, 2012) (though similar results were obtained

using this alternative latency correction). Even when each monkey was analyzed separately, we still

observed pIT selectivity dynamics (Figure 4A). Furthermore, there was <10 ms average latency dif-

ference between pIT, cIT, and aIT so that a common 30 ms wide analysis window for early (60–90

ms) and late (100–130 ms) firing rates was sufficient across IT stages. Images that produced an aver-

age population response >0.9 of the initial response (60–100 ms) to a face image with all face parts

arranged in their typical positions in a frontal face were analyzed further (Figures 2 and 3). Stimulus

selection was intended to limit potentially confounding differences in visual drive between image

classes. In a control test, we also repeated our analysis by selecting images on a site-by-site basis

where images with typical frontal and atypical arrangements of face parts were chosen to be within

0.75x to 1.25x of the initial response to the complete face image (minimum of five typical and five

atypical images in this response range for inclusion of site in analysis). In follow-up analyses of popu-

lation responses, we specifically limited comparison to images with the same number of parts

(Figure 4B,C). For example, for single part images, we used the image with the eye in the upper,

contralateral region of the outline as a reference requiring a response >0.9 of the initial population

response to this reference for inclusion of the images in this analysis. We found that four other
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images of the 27 single-part images elicited a response at least as large as 90% of the response to

this standard image. For images containing all four face parts, we used the complete, frontal face as

the standard and found atypical face-part arrangements of the four face parts that drove at least

90% of the early response to the whole face (2 images out of 10 tested). To measure decoding per-

formance for typical versus atypical face-part configurations (or face versus non-face objects from

our screen set), we used a linear-SVM classifier trained on responses (60–200 ms post image onset)

of resampled subsets of 30 sites from pIT, cIT, or aIT. Trials splits were used so that all images were

used in training and tested but on separate, held-out trials (90% train, 10% test). To compute indi-

vidual site d’ for each stimulus partition (e.g. typical versus atypical arrangements of 1 face part), we

combined all presentations of images with frontal face-part arrangements and compared these

responses to responses from all presentations of images with atypical face-part arrangements using

d’ = (u1- u2)/((var1 +var2)/2)
1/2 where variance was computed across all trials for that image class

(e.g. all presentations of all typical face-part configuration images); this was identical to the d’ mea-

sure used for face versus non-face object selectivity in Figure 1 and Results and to that used in previ-

ous work for computing selectivity for faces versus non-face objects (Aparicio et al., 2016;

Ohayon et al., 2012). For example, for the main image set (Figure 1B), we compared all presenta-

tions of typical face-part configuations (8 images x 10 presentations/image = 80 total presentations)

to all presentations of atypical face-part arrangements (13 images x 10 presentations/image = 130

total presentations) to compute the d’ values for each site in two time windows (60–90 ms and 100–

130 ms) as shown in Figure 3A. A positive d’ implies a stronger response to more naturally occurring

typical frontal arrangements of face parts while a negative d’ indicates a preference for atypical

arrangements of the face parts.

Dynamical models
Modeling framework and equations
To model the dynamics of neural response rates in a hierarchy, we start with the simplest possible

model that might capture those dynamics: a model architecture consisting of a hidden stage of proc-

essing containing two units that linearly converge onto a single output unit. We use this two-stage

cascade for illustration of the basic concepts which can be easily extended to longer cascades with

additional stages, and we ultimately used a three-stage version of the model to fit our neural data

collected from three cortical stages (Figure 5).

An external input is applied separately to each hidden stage unit, which can be viewed as repre-

senting different features for downstream integration. We vary the connections between the two

hidden units within the hidden processing stage (lateral connections) or between hidden and output

stage units (feedforward and feedback connections) to instantiate different model families. The

details of the different architectures specified by each model class can be visualized by their equiva-

lent neural network diagrams (Figure 5). Here, we provide a basic description for each model tested

using the two stage example for simplicity. All two stage models utilized a 2 � 2 feedforward iden-

tity matrix A that simply transfers inputs u (2 � 1) to hidden layer units x (2 � 1) and a 1 � 2 feedfor-

ward vector B that integrates hidden layer activations x into a single output unit y.

A¼ aI; B¼ b½1;1� (1)

By simply substituting in the appropriate unit vector and weight matrix transforming inputs from

one layer to the next for the desired network architecture, this simple two-stage architecture can be

extended to larger networks (e.g. see three-stage network diagrams in Figure 5A). To generate

dynamics in the simple networks below, we assumed that neurons act as leaky integrators of their

total synaptic input, a standard rate-based model of a neuron used in previous work (Seung, 1997),

(Rao and Ballard, 1999).

Pure feedforward
In the purely feedforward family, connections are exclusively from hidden to output stages through

feedforward matrices A and B.

_x¼ Au�x=t; _y¼ Bx� yt (2)
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where t is the time constant of the leak current which can be seen as reflecting the biophysical limi-

tations of neurons (a perfect integrator with large t would have almost no leak and hence infinite

memory).

Lateral inhibition
Lateral connections (matrix with off-diagonal terms) are included and are inhibitory. The scalar kl sets

the relative strength of lateral inhibition versus bottom-up input.

_x¼ Au�
0 k1

k1 0

� �

x�x=t; _y¼ Bx� y=t (3)

Normalization
An inhibitory term that scales with the summed activity of units within a stage is included. The scalar

ks sets the relative strength of normalization versus bottom-up input.

_x¼ Au� ks
X

x �x�x=t; _y¼ Bx� ksy � y� y=t (4)

Normalization (nonlinear) (Carandini et al., 1997)
The summed activity of units within a stage is used to nonlinearly scale shunting inhibition.

_x¼ Au� x

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ks
P

x
p ; _y¼ Bx� y

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ksy
p (5)

Note that this is technically a nonlinear dynamical system, and since the normalization term in

Equation (5) is not continuously differentiable, we used the fourth-order Taylor approximation

around zero in the simulations of Equation (5).

Feedback (linear reconstruction)
The feedback-based model is derived using a normative framework that performs optimal inference

in the linear case (Seung, 1997) (unlike the networks in Equations (2)-(5) which are motivated from

a mechanistic perspective but do not directly optimize a squared error performance loss). The feed-

back network minimizes the cost C of reconstructing the inputs of each stage (i.e. mean squared

error of layer n predicting layer n-1).

C¼ 1

2
ðu�ATxÞ2þ 1

2
ðx�BTyÞ2 (6)

Differentiating this coding cost with respect to the encoding variables in each layer x, y yields:

qC

qx
¼ Aðu�ATxÞþ ðx�BTyÞ; qC

qy
¼�Bðx�BTyÞ (7)

The cost function C can be minimized by descending these gradients over time to optimize the

values of x and y:

dx
dt
¼� qC

qx
¼ Aðu�ATxÞ� ðx�BTyÞ�x=t

dy

dt
¼� qC

qy
¼ Bðx�BTyÞ�y=t

(8)

The above dynamical equations are equivalent to a linear network with a connection matrix con-

taining symmetric feedforward (B) and feedback (BT) weights between stages x and y as well as

within-stage pooling followed by recurrent inhibition (-AATx and -BBTy) that resembles normaliza-

tion. The property that symmetric connections minimize the cost function C generalizes to a feedfor-

ward network of any size or number of hidden processing stages (i.e. holds for arbitrary lower

triangular network connection matrices). The final activation states (x,y) of the hierarchical generative

network are optimal in the sense that the bottom-up activations (implemented through feedforward

connections) are balanced by the top-down expectations (implemented by feedback connections)

which is equivalent to a Bayesian network combining bottom-up likelihoods with top-down priors to

compute the maximum a posteriori (MAP) estimate. Here, the priors are embedded in the weight
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structure of the network. In simulations, we include an additional scalar ktd that sets the relative

weighting of bottom-up versus top-down signals.

_x¼ Aðu�ATxÞ� ktdðx�BTyÞ�x=t (9)

Error signals computed in the feedback model
In Equation (9), inference can be thought of as proceeding through integration of inputs on the den-

drites of neuron population x. In this scenario, all computations are implicit in dendritic integration.

Alternatively, the computations in Equation (9) can be done in two steps where, in the first step,

reconstruction errors are computed (i.e. e0 = u-ATx, e1 = x-BTy) and explicitly represented in a sepa-

rate error coding population. These error signals can then be integrated by their downstream target

population to generate the requisite update to the state signal of neuron population x.

_x¼ Ae0 � ktde1 �x=t; _y¼ Be1 � y=t (10)

An advantage of this strategy is that the a state unit now directly receives errors as inputs, and

those inputs allow implementation of an efficient Hebbian rule for learning weight matrices (Rao and

Ballard, 1999) – the gradient rule for learning is simply a product of the state activation and the

input error activation (weight updates obtained by differentiating Equation (6) with respect to

weight matrices A and B: DA = x.e0
T, DAT = e0.x

T, DB = y.e1
T, and DBT = e1.y). Thus, the reconstruc-

tion errors serve as computational intermediates for both the gradients of online inference mediated

by dendritic integration (dynamics in state space, Equation (10)) and gradients for offline learning

mediated by Hebbian plasticity (dynamics in weight space).

In order for the reconstruction errors at each layer to be scaled appropriately in the feedback

model, we invoke an additional downstream variable z to predict activity at the top stage such that,

instead of e2 = y which scales as a state variable, we have e2 = y-CTz (Figure 5A). This overall model

reflects a state and error coding model as opposed to a state only model.

Feedback (three-stage)
For the simulations in Figure 5, three-stage versions of the above equations were used. These

deeper networks were also wider such that they began with four input units (u) instead of only two

inputs in the two-stage models. These inputs converged through successive processing stages (w,x,

y) to one unit at the top node (z) (Figure 5).

Feedback (nonlinear reconstruction)
To test the generality of our findings beyond a linear reconstruction cost, we simulated feedback-

based models which optimized different candidate cost functions proposed for the ventral stream

(Figure 6). In nonlinear hierarchical inference, reconstruction is performed using a monotonic nonlin-

earity with a threshold (th) and bias (bi):

c¼ 1

2
ðu� f ðATxÞÞ2 þ 1

2
ðu� f ðBTyÞÞ2;where f ðxÞ ¼ tanhðx� thÞþ bi (11)

_x¼ Aðu� f ðATxÞÞð1� tanhðATx� thÞ2Þ� ktdðx� f ðBTyÞÞ�x=t

_y¼ Bðx� f ðBTyÞÞð1� tanhðBTy� thÞ2Þ�y=t
(12)

Feedback (linear construction)
Instead of a reconstruction cost where responses match the input (i.e. generative model) as in unsu-

pervised learning, we additionally simulated the states and errors in a feedback network minimizing

a linear construction cost where the network is producing responses to match a given output (i.e.

discriminative model) similar to supervised learning:

C¼ 1

2
ðAu�xÞ2 þ 1

2
ðBx�yÞ2 (13)
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_x¼ ðAu�xÞ� ktdB
TðBx�yÞ� x=t; _y¼ ðBx�yÞ�y=t (14)

Model simulation
To simulate the dynamical systems in Equations (2)-(14), a step input u was applied. This input was

smoothed using a Gaussian kernel to approximate the lowpass nature of signal propagation in the

series of processing stages from the retina to pIT:

uðtÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p e

�ðt�t0Þ2

2s2 �hðtÞ) _u¼ 1
ffiffiffiffiffiffiffiffiffiffiffi

2ps2
p e

�ðt�t0Þ2

2s2 �h (15)

where the elements of h are scaled Heaviside step functions. The input is thus a sigmoidal ramp

whose latency to half height is set by t0 and rise time is set by s. For simulation of two-stage models,

there were ten basic parameters: latency of the input t0, standard deviation of the Gaussian ramp s,

system time constant t, input connection strength a, feedforward connection strength b, the four

input values across two stimulus conditions (i.e. h11, h12, h21, h22), and a factor sc for scaling the final

output to the neural activity. In the deeper three-stage network, there were a total of fifteen param-

eters which included an additional feedforward connection strength c and additional input values

since the three-stage model had four inputs instead of two. The lateral inhibition model class

required one additional parameter kl as did the normalization model family ks, and for feedback

model simulations, there was an additional feedback weight ktd to scale the relative contribution of

the top-down errors in driving online inference. For the error coding variants of the feedback model,

gain parameters c (two-stage) and d (three-stage) were included to scale the overall magnitude of

the top level reconstruction error.

Model parameter fits to neural data
In fitting the models to the observed neural dynamics, we mapped the summed activity in the hid-

den stage (w) to population averaged activity in pIT, and we mapped the summed activity in the out-

put stage (y) to population averaged signals measured in aIT. To simulate error coding, we mapped

the reconstruction errors e1 = w-BTx and e3 = y-CTz to activity in pIT and aIT, respectively. We

applied a squaring nonlinearity to the model outputs as an approximation to rectification since

recorded extracellular firing rates are non-negative (and linear rectification is not continuously differ-

entiable). Analytically solving this system of dynamical Equations (2)-(15) for a step input is pre-

cluded because of the higher order interaction terms (the roots of the determinant and hence the

eigenvalues/eigenvectors of a 3 � 3 or larger matrix are not analytically determined, except for the

purely feedforward model which only has first-order interactions), and in the case of the normaliza-

tion models, there is an additional nonlinear dependence on the shunt term. Thus, we relied on

computational methods (constrained nonlinear optimization) to fit the parameters of the dynamical

systems to the neural data with a quadratic (sum of squares) loss function.

Parameter values were fit in a two-step procedure. In the first step, we fit only the difference in

response between image classes (differential mode which is the selectivity profile over time, see

Figure 5A, right data panel), and in the second step, we refined fits to capture an equally weighted

average of the differential mode and the common mode (the common mode is the average across

images of the response time course of visual drive). This two-step procedure was used to ensure

that each model had the best chance of fitting the dynamics of selectivity (differential mode) as

these selectivity profiles were the main phenomena of interest but were smaller in size (20% of

response) compared to overall visual drive. In each step, fits were done using a large-scale algorithm

(interior-point) to optimize coarsely, and the resulting solution was used as the initial condition for a

medium-scale algorithm (sequential quadratic programming) for additional refinement. The lower

and upper parameter bounds tested were: t0=[50 70], s=[0.5 25], t =[0.5 1000], kl,ks,ktd=[0 1], a,b,c,

d=[0 2], h=[0 20], sc=[0 100], th=[�20 20], and bi=[�1 1] which proved to be adequately liberal as

parameter values converged to values that did not generally approach these boundaries. To avoid

local minima, the algorithm was initialized to a number of randomly selected points (n = 50), and

after fitting the differential mode, we took the top fits (n = 25) for each model class and used these

as initializations in subsequent steps. The single best fitting instance of each model class is shown in

the main figures.
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Data and code availability
Source data including all image stimuli and neural data are available online in accompanying files.

Complete model code is also available in accompanying files online. All data analysis and computa-

tional modeling were done using custom scripts written in MATLAB.

Statistics
Error bars represent standard errors of the mean obtained by bootstrap resampling (n = 1000). All

statistical comparisons including those of means or correlation values were obtained by bootstrap

resampling (n = 1000) producing p-values at a resolution of 0.001 so that the lowest p-value that can

be reported is p = 0.000 given the resolution of this statistical analysis. All statistical tests were two-

sided unless otherwise specified. Spearman’s rank correlation coefficient was used.
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