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Maps obtained by functional magnetic resonance imaging (fMRI) are thought to reflect the underlying spatial layout of neural activity.
However, previous studies have not been able to directly compare fMRI maps to high-resolution neurophysiological maps, particularly in
higher level visual areas. Here, we used a novel stereo microfocal x-ray system to localize thousands of neural recordings across monkey
inferior temporal cortex (IT), construct large-scale maps of neuronal object selectivity at subvoxel resolution, and compare those
neurophysiology maps with fMRI maps from the same subjects. While neurophysiology maps contained reliable structure at the sub-
millimeter scale, fMRI maps of object selectivity contained information at larger scales (�2.5 mm) and were only partly correlated with
raw neurophysiology maps collected in the same subjects. However, spatial smoothing of neurophysiology maps more than doubled that
correlation, while a variety of alternative transforms led to no significant improvement. Furthermore, raw spiking signals, once spatially
smoothed, were as predictive of fMRI maps as local field potential signals. Thus, fMRI of the inferior temporal lobe reflects a spatially
low-passed version of neurophysiology signals. These findings strongly validate the widespread use of fMRI for detecting large (�2.5
mm) neuronal domains of object selectivity but show that a complete understanding of even the most pure domains (e.g., faces vs nonface
objects) requires investigation at fine scales that can currently only be obtained with invasive neurophysiological methods.

Introduction
As a noninvasive measure of whole brain activity, fMRI has become
invaluable in studying human brain function. However, fMRI is
only an indirect measure of neural activity—it depends on the po-
tentially complex coupling between the neural events of interest and
their temporally lagged, indirect influence on vascular events (At-
twell et al., 2010; Kriegeskorte et al., 2010; Masamoto and Kanno,
2012). A previous study found that neural and fMRI signals were
correlated over time at a given location (Logothetis et al., 2001) but
did not measure whether the pattern of selectivity in fMRI across
space corresponded to the underlying pattern in neurophysiology—
an important remaining question given the widespread use of fMRI
for inferring the 3D layout of brain function.

Studies in primary visual cortex (V1) have suggested that the
spatial spread of fMRI signals is 2– 4 mm [full-width at half-

maximum (FWHM)] based on inference from previously known
functional organization in V1 (Engel et al., 1997; Parkes et al.,
2005; Olman et al., 2007). However, these studies did not com-
pare neurophysiology to fMRI directly in the same subjects (Dis-
brow et al., 2000; Kim et al., 2000; Duong et al., 2001; Kim et al.,
2004; Fukuda et al., 2006; He et al., 2008; Yacoub et al., 2008; Bell
et al., 2011), which may be required in studying higher level areas
such as inferior temporal cortex (IT) where neural spatial orga-
nization is not as well understood as in V1 (Hubel and Wiesel,
1974; Ohki et al., 2005) and where there may be more variability
over individuals. A main methodological limitation has been that
previous neurophysiology studies relied on coarse, extrapolative
electrode localization techniques (Tsao et al., 2006; Bell et al.,
2011) that do not support quantitative, fine-scale construction of
neural maps for comparison to fMRI. Although optical imaging
techniques have provided exquisite neural maps, they are limited
to surface-accessible cortex and to imaging windows of a few
millimeters (Wang et al., 1996; Tanigawa et al., 2010), whereas
parts of IT cortex are buried in a major cortical sulcus or at the
base of the skull and are thus invisible to these methods.

Here, we aimed to map the spatial organization present at the
neural level in macaque IT, an area thought to contain object
selective domains, to establish a neurophysiological gold stan-
dard for comparison to previously measured fMRI maps (Op de
Beeck et al., 2008; Bell et al., 2009; Pinsk et al., 2009; Tsao et al.,
2003, 2008a; Ku et al., 2011). Utilizing a novel stereo microfocal
x-ray system for electrode localization (Cox et al., 2008), we ob-
tained subvoxel (�300 �m resolution), in vivo estimates of elec-
trode position while widely sampling recording sites across the
whole of inferior temporal cortex (�15 � 10 � 3 mm) surpassing
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the coverage-resolution tradeoffs inherent in previous work
(Wang et al., 1996; Bell et al., 2011). We found that neurophysi-
ology maps contained reproducible structure at submillimeter
spatial scales but were only weakly predictive of fMRI maps.
However, spatially smoothed versions of the neurophysiology
maps correlated quite well with fMRI maps. This finding pro-
vides empirical validation of the utility of current fMRI method-
ology in revealing large scale object selective structures in IT while
also demonstrating its current limitations for discriminating the
finer neural structure that is present in IT cortex.

Materials and Methods
Animals and surgery
Two rhesus macaque monkeys (Macaca mulatta) weighing 3– 4 kg at the
time of scanning and 5–7 kg at the time of electrophysiological recording
(M1� male, M2 � female; referred to as monkey J and monkey M,
respectively, in previous fMRI work) (Op de Beeck et al., 2008) were used
in this study. Monkeys were scanned at five years of age after reaching
sexual maturity and after adult brain size is typically reached (Malkova et
al., 2006), and physiological recordings were performed three years later.
Despite the large gap in time between imaging and physiology experi-
ments, anatomical scans revealed almost no longitudinal change in brain
size during the intervening period and correlation of structural MR vol-
umes across this time period was �0.8 in the temporal lobe of both
monkeys.

Details of headpost and recording chamber implant surgeries are de-
scribed elsewhere (Issa and DiCarlo, 2012). Briefly, before behavioral
training and fMRI scanning, a plastic, fMRI-compatible headpost was
implanted in dental acrylic anchored to the skull using ceramic screws. In
a second surgery before electrophysiological recording, a plastic, cylin-
drical chamber was implanted for targeting recordings to the temporal
lobe using a dorsal to ventral approach. All procedures were performed
in compliance with National Institutes of Health guidelines and the stan-
dards of the MIT Committee on Animal Care and the American Physio-
logical Society.

Images and behavioral training
Because fMRI and neurophysiology experiments were conducted sepa-
rately, image presentation and task conditions varied slightly. For both
fMRI and neurophysiology, we followed standard methodologies used in
previous studies (Tsao et al., 2003; Hung et al., 2005). Here, we provide
an integrated summary of the similarities and differences between exper-
iments (also see Table 1). In both experiments, presented visual images
contained a single object drawn from six possible categories, monkey
faces, nonface objects, power spectrum matched scrambles of nonface
objects, “smoothies,” “spikies,” and “cubies.” The latter three classes
were synthetic objects generated in Matlab and are described in our
previous work (Op de Beeck et al., 2008). In both experiments, images
were presented at a size of six degrees of visual angle. However, an LCD
projector was used during scanning (1920 � 1200, 75 Hz refresh rate,
�50 cm in front of the animal) while a CRT monitor was used during

neurophysiology (1900 � 1200, 85 Hz refresh rate, 55 cm in front of
animal). In fMRI experiments, monkeys were trained to fixate on a cen-
tral fixation square (0.3 degree diameter) within a �1.25 degree fixation
window while a �2 degree fixation window was used in physiology ex-
periments; however, in post hoc analyses we found that monkeys gener-
ally maintained fixation within a much smaller 1 degree region and do
not scan across images [Issa and DiCarlo (2012), their Fig. 5A]. During
fMRI sessions, images were presented in block design such that image
exemplars drawn from a single category were presented in a single block
at slow presentation rates (300 ms on, 420 ms off or 1.4 Hz). In physiol-
ogy experiments, images from all categories were randomly interleaved
(10 or 20 exemplars each for faces, objects, and scrambled objects and 3
or 20 exemplars each for smoothies, spikies, and cubies) at much faster
rates (rapid serial visual presentation: 100 ms on, 100 ms off or 5 Hz)
(Hung et al., 2005; De Baene et al., 2007). In physiology experiments,
each fixation trial lasted three to five seconds (15–25 images) while in
fMRI experiments fixations lasted tens of seconds during category blocks
lasting 45 s (�60 images). Although stimulus presentation conditions
were not matched between electrophysiology (interleaved, rapid presen-
tation) and fMRI (blocked, slower presentation), previous work has
shown that rank order neural object selectivity is similar across both fast
and slow stimulus presentation rates (Edwards et al., 2003; De Baene et
al., 2007). Furthermore, similar category selective regions are observed
under fMRI using both blocked and interleaved (event-related) designs
(Kanwisher et al., 1997; Mur et al., 2012; Vul et al., 2012).

Each scan run contained nine blocks lasting a total of 7 min. Runs
included three blocks each of three categories (faces, objects, scrambled
objects or smoothies, spikies, cubies). Since these two run types (natural
and synthetic) were collected on different days, maps were constructed
for contrasts within runs (e.g., smoothies minus spikies) and not across
runs (e.g., faces minus smoothies), yielding six total contrasts per subject.
fMRI data were collected for multiple runs across three to seven scan
sessions (�30 total runs in M1; �50 total runs in M2).

In monkey M2, many sites were not tested with all six categories lead-
ing to variable number of sites per contrast in M2 (faces and objects, n �
1522; scrambled objects, n � 229; smoothies/spikies/cubies, n � 450)
while all sites in monkey M1 were tested in this study with all six catego-
ries (n � 369). Also, in monkey M2, fewer exemplars were used per
category, but at least 15 presentations (3 images � 5 repetitions) were
collected per category and many more presentations were obtained in
most cases across both monkeys (median � 57 trials/category).

Functional imaging
Functional scanning was conducted at the Martinos Center for Biomed-
ical Imaging at Massachusetts General Hospital in a horizontal bore 3
tesla Siemens Tim Trio scanner using a surface coil. A contrast agent
[monocrystalline iron oxide nanoparticle (MION)] was injected intrave-
nously before scanning. Functional scans were acquired using a gradient
echo planar (EPI) sequence with coronal slice prescription (1.375 mm
slice thickness). In addition to functional scans, T1-weighted anatomical
scans were obtained before functional imaging experiments and before
neurophysiology experiments. Additional details of functional and ana-
tomical scans can be found in our previous studies (Op de Beeck et al.,
2008; Issa and DiCarlo, 2012).

Neurophysiological recordings
In both monkeys, neurophysiological recordings were obtained in the
left hemisphere. Multiunit activity (MUA) and local field potentials
(LFPs) were recorded as described previously using glass-coated tung-
sten microelectrodes (M1 � 389, M2 � 1522 total sites) (Issa and Di-
Carlo, 2012). Penetrations traveled vertically from dorsal to ventral, and
neurophysiological data were collected systematically at 300 to 500 �m
intervals sampling mostly gray matter locations but also some white
matter locations (see example coronal slices in Fig. 1A). More extensive
sampling of posterior IT was obtained in monkey M2 (see Figs. 3, 4) while
in monkey M1, sampling was restricted to the anterior two-thirds of IT
(see Fig. 5). The raw electrode signal (1 Hz to 4 kHz, 8 kHz sampling rate)
was stored, and the LFP was obtained by lowpass filtering (�300 Hz, 128
order elliptical filter) the raw electrode signal and notch filtering at 60 Hz
and its harmonics (120, 180, and 240 Hz).

Table 1. Comparison of conditions in fMRI and neurophysiology experiments

fMRI Neurophysiology

Age (years) 4 – 6 8-10
Weight (kg) 3-4 5-7
Presentation mode Block Interleaved
Image duration (ms) 300 100
Presentation rate (images/s) 1.4 5
Image size (deg) 6 6
# of sampled locations (M1) 159 voxels 389 sites
# of sample locations (M2) 340 voxels 1522 sites

fMRI experiments were conducted separately from neurophysiology experiments following methodologies used in
prior work (Tsao et al., 2003; Hung et al., 2005). This introduced some differences in the collection of fMRI and
neurophysiology data. For example, images were presented at slower rates (1.4 Hz) in fMRI experiments as opposed
to neurophysiology experiments (5 Hz), and fMRI data were collected when monkeys were younger in age. A
detailed explanation of similarities and differences in fMRI and neurophysiology is provided in Materials and
Methods.
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Figure 1. Neurophysiological mapping of IT cortex. A, Locations of neurophysiological recordings in subject M2 are shown on an inflated surface view of the brain. The locations of three example
voxels are projected to their approximate locations on the surface (gray outlines). Locations spanned the posterior to anterior extent of IT (�20 mm) (cortical gray matter–white matter boundary
shown; dark regions indicate sulci and light regions gyri; sites are projected from 3D to the nearest point on the 2D gray-white manifold; STS, superior temporal sulcus; LS, lateral sulcus; IOS, inferior
occipital sulcus). The coronal sections demonstrate the locations of the physiology sites relative to the cortical gray matter (gray ribbon) as derived from T1-weighted anatomical scans and relative
to example fMRI voxels (light shaded squares). Furthermore, the relative 3D positions of individual sites within three example voxels are shown. For each site, the response to faces and nonface
objects was measured, and selectivity was computed as the difference in these responses in a 50 –200 ms window post image onset (example poststimulus time (Figure legend continues.)
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X-ray-based electrode localization
All electrophysiological recordings were visualized using a stereo micro-
focal x-ray system developed previously in our laboratory (Cox et al.,
2008), and details of reconstruction of recording locations in 3D space
and coregistration to MRI are described elsewhere (Issa and DiCarlo,
2012). Although the ex vivo resolution of the x-ray system is �30 �m, the
in vivo accuracy is limited by factors such as tissue movement either from
electrode forces or from brain movement across days. Based on prelim-
inary testing using internal fiducials to monitor movement, these sources
of motion error are on the order of a few hundred micrometers (Issa et
al., 2010) and are not a limiting factor in comparisons to fMRI maps that
were �2.5 mm in effective resolution (Fig. 2).

Analysis
MUA, LFP, and fMRI responses. For fMRI data, linear response weights
were estimated using a general linear model (GLM) to fit the time series

in each voxel [see the study by Op de Beeck et al. (2008) for detailed
description of fMRI preprocessing and analysis]. Scans from multiple
sessions collected before and after �3 months of discrimination training
for spikies (monkey M1) and smoothies (monkey M2) were motion
corrected and registered, and the � weights in each voxel were averaged
to yield a single volume for each contrast. For the majority of the analyses
of this paper, fMRI maps were smoothed using a Gaussian kernel
(FWHM � 2.5 mm). In our previous work, we showed that smoothing
fMRI maps at 2.5 mm scales was optimal for reducing noise while pre-
serving as much large scale structure as possible [Op de Beeck et al.
(2008), see their supplemental Fig. 5]. In the present work, we confirmed
that reliable information in fMRI maps drops off sharply at 2.5 mm
suggesting that little information was lost by smoothing fMRI maps (Fig.
2). Furthermore, when we repeated analyses using unsmoothed fMRI
data, the main findings did not change (see Results). Multiunit firing
rates for each object class were computed by averaging spike counts
across all exemplars in a 50 –200 ms window following image onset (Fig.
1A). LFP waveforms were first DC corrected, and the root mean square
(RMS) amplitude of the average waveform across all image presentations
of a category was computed. Category selectivity was measured as the
difference in raw spike rates (MUA), RMS power (LFP), or � weights
(fMRI). Computing a d’ or t statistic that normalizes by SD of the signal
yielded similar results as using a simple difference of the means that has
the added advantage of not relying on the number of trials collected and
that as a linear operation allows for commutativity of applied transforms.
Sites were included in analysis if their response to either category in a
contrast was at least 1.65*SEM different from baseline (baseline com-
puted in the 0 –50 ms window following image onset; for LFPs, the mean
of SD in each time bin was used to compute the SEM). In separate
analyses that we conducted, distinguishing sites/voxels based on whether
they were in white matter or gray matter (see Fig. 6B) or simply including
all sites did not affect the main findings. No additional visual drive crite-
ria were used in selecting fMRI voxels, so fMRI voxels were used in
analysis purely based on whether they contained at least one neurophys-
iology site.

Spearman’s rank correlations were computed pointwise between
MUA (or LFP) sites and corresponding fMRI voxels. It is important to
note that all correlations were computed in native 3D space such that
quantitative comparisons were done in the original fMRI volume (in one
control analysis, correlations were done after projecting to the surface;
see Fig. 6B). However, for the purpose of visualization, data are plotted
after projecting onto a 2D surface (Figs. 3–5; see Fig. 1A for illustration of
this projection). These visualizations are only meant for qualitative eval-
uation. Surface flattening is not a distance preserving transform (non-
isometric) and may exaggerate some distances (e.g., in unfolding a
sulcus) while compressing others (e.g., on the gyrus). Furthermore, sites
are collapsed to the surface in going from 3D to 2D, so depth information
is lost. These factors alter the spatial correspondence between fMRI and
neurophysiology. In the present study, we took the conservative ap-
proach of performing quantitative fMRI and neurophysiology compari-
sons in 3D space.

Neurophysiology-to-fMRI transforms. We applied transforms to neural
and/or fMRI maps to test specific hypotheses about the linkage between
neurophysiology-determined and fMRI-determined maps. Each trans-
form was tested individually or cascaded with a fixed spatial smoothing
transform. Below, we list the 16 types of transforms that we applied (Fig.
6B): (1) Spatial smoothing: A three-dimensional Gaussian kernel was
used to smooth neurophysiology maps to different degrees (FWHM � 0
to 24 mm) in native 3D space. (2) Balanced spatial smoothing: Since
physiology sites were not uniformly sampled in space, smoothing esti-
mates could be biased by regions where dense sampling was obtained by
chance. For example, if only a few sites were collected near to the voxel to
be predicted, then predictions based on smoothing might be inadver-
tently dominated by the large number of distant sites. To ensure that the
effects of uneven sampling were not a concern, we performed a control
(called “balanced sampling”; Fig. 6B) where we averaged sites in 1 mm
bins before smoothing. This procedure insured that the predicted fMRI
response at each voxel was, for example, not dominated by dense samples
of physiology sites at distant locations. This correction was performed in

4

(Figure legend continued.) histograms shown on far right). Metrics such as the purity (frac-
tion of sites preferring faces) or the average response differential within a voxel could be com-
puted and compared with the fMRI percentage signal change for the faces versus nonface
objects contrast (see text next to each example voxel). In general, quantitative analyses were
performed in voxel (volume) space, and surface-based representations (Figs. 3-5) are for qual-
itative appreciation of the data. B, Distribution of the number of sites collected per voxel in the
faces versus objects contrast maps measured in both monkeys. In voxels that were sampled for
face versus object selectivity, sampling density averaged 4.4 sites per voxel in monkey M2 (36
voxels with �10 sites sampled; also, see Fig. 1A) and averaged 2.3 sites per voxel in monkey
M1. For the remaining contrast maps, sampling density averaged �2 sites/voxel.

Figure 2. Scale of correlations in neurophysiology and fMRI maps. MUA and LFP maps con-
tained reproducible structure at finer spatial scales (�1 mm) than fMRI maps (2.5 mm) (based
on smoothing width at 50% height; vertical lines). To estimate the scale of spatial correlations
within a map, maps smoothed at a particular resolution using a Gaussian kernel were sub-
tracted from raw maps. The correlation of the residuals in independent data sets (n � 30
iterations of split halves data) was used as an estimate of any reliable structure after removing
spatial frequency content up to that smoothing width. Smaller smoothing widths (i.e., 0.1 mm,
right) remove most spatial information leading to high-passed maps; at the other extreme,
large smoothing widths (i.e., 40 mm, left) only remove very low spatial frequencies while
retaining most spatial frequencies and thus most of the reliable structure. Note that MUA and
LFP correlations reached higher absolute levels than fMRI maps because fMRI maps were noisier
(less reliable across trials) than MUA and LFP maps. However, normalized values are plotted on
the ordinate for ease of comparison. fMRI maps did contain some information below 2 mm
spatial scales, but correlations were weak in this regime (error bars reflect SEM across the 12
contrast maps collected). Correlations in fMRI maps were computed along a contiguous set of
voxels (volume) encompassing the locations of MUA and LFP sites. MUA and LFP curves are
truncated at 100 �m because of the limits of the resolution of x-ray-based mapping, and the
fMRI curve is truncated at 1.25 mm since this was the voxel resolution used in scanning.
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addition to smoothing with a Gaussian spatial kernel, and it is important
to note that the form of the Gaussian kernel also acts to enforce the
intuition that nearby sites should be weighted more strongly than distant
sites. (3) Response windows: Responses in adjacent 50 ms response win-
dows were tested. (4) d’: Mean response differences were normalized by
the RMS of the SDs for the two categories tested (�1 � �2)/rms(�1,�2).
(5) Contrast: Mean response differences were normalized by the sum of
the absolute value of the mean responses (�1 � �2)/(��1� � ��2�). (6)
Binarized: Responses were set to �1 or 1 based on category preference.
(7) Rectified: If the strongest response in a category pair was inhibitory,
then responses were rectified (i.e., if category 1 was more strongly inhib-
ited than category 2 was excited, the negative response differential, �1 �
�2, was rectified). The rationale behind this transform is that if the fMRI
signal is related to synaptic processing, then activity at both inhibitory
and excitatory synapses may drive blood flow and that suppression of
spiking may be as metabolically costly as enhancement of spiking (Logo-
thetis, 2008). (8) Active: Only the most active physiology sites were in-
cluded in analysis by finding an optimal activity threshold (0 to 100 Hz
tested), testing the possibility that metabolic consumption will be more
directly related to neurons with higher activity. (9) Selective: Sites were
included in analysis by finding an optimal selectivity threshold for posi-
tive differences (category 1 preferring) and a second, separate threshold
for negative differences (category 2 preferring) (�200 to 200 Hz rate
difference tested for MUA; �16 to 16 �V difference tested for LFP). (10)
Gray (white) matter: Sites falling in the gray (white) matter based on
anatomical projections were separately tested for their correlation to

fMRI. (11) Posterior/anterior (dorsal/ventral): Sites falling in the lower
or upper 50th percentile of AP (DV) coordinates were analyzed sepa-
rately for their correlation to fMRI. Posterior regions may have more
well-defined spatial organization or be less susceptible to fMRI distortion
than the anterior pole; alternatively, anterior regions may show stronger
category selectivity and more position tolerance leading to less suscepti-
bility to low-level confounds such as eye movements. (12) Concave/
convex: Sites were divided into two groups based on the surface
curvature of the gray–white matter boundary nearest to each site. (13)
Scale/rotate/translate/all: The 3D neurophysiology coordinates were op-
timally rescaled in space (0.8� to 1.2� scaling), rotated (�10 to 10
degree coronal and sagittal angles), or translated (�3 to 3 voxels in the x,
y, or z directions). In the “all” condition, all six spatial transform param-
eters (one scale factor, two rotation angles, and three translations) were
simultaneously optimized. (14) Decompress: Given that the electrode
compresses the cortical tissue locally, we applied a first order compressive
model where the skull provides a rigid boundary condition and compres-
sion increases with distance from the skull up to saturation according to
a sigmoid function, �*r/(��r). Both the plateau � and sensitivity � of
the sigmoid were optimized. (15) Surface: Physiology sites were re-
mapped to the nearest point on the gray–white cortical surface, and
correlations were computed with fMRI voxels at those vertex locations. A
2D surface-based analysis has an advantage over computing correlations
in native 3D space as it respects the inherent organization of neural
activity along the 2D cortical manifold and only uses voxels in the vicinity
of the gray matter. (16) LFP frequency bands: The power spectrum of

Figure 3. Example neurophysiological maps of category selectivity in IT. Neurophysiological maps of object selectivity (left) appeared more heterogeneous compared with fMRI maps (right) that
showed more gradual, large-scale gradients of category selectivity (e.g., note the presence of a large face-selective region, the middle face patch, in central IT). Optimal spatial smoothing yielded
neurophysiological maps (middle) that more closely resembled the large-scale structure present in fMRI maps. This improvement was apparent in the smoothie versus spikie map where smoothie
and spikie selective regions became more clearly segregated after spatial smoothing (middle) even though smoothie and spikie selective sites were intermixed in raw neurophysiology maps (left).
Neurophysiology and fMRI maps were quantitatively compared only at locations where sites were recorded, and fMRI data shown here are plotted as dots at these corresponding locations. It is also
important to note that all correlations were computed in native 3D space; surface-based visualization is used here for qualitative visual comparison of contrast maps as surface flattening and
projection of sites onto the surface is not a distance preserving transform (non-isometric) and alters the spatial correspondence between fMRI and neurophysiology.
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Figure 4. Correspondence between spatially smoothed neurophysiology maps and fMRI in monkey M2. Optimally smoothed MUA (left) and LFP (right) maps are shown for comparison
to fMRI contrast maps (middle). The gradients of category selectivity are comparable across maps [e.g., the smoothie vs spikie maps contain a posterior smoothie selective region (purple)
followed by a spikie selective zone (yellow)]. However, for one contrast map (smoothies vs cubies), neurophysiology-to-fMRI correlations were low in both subjects (monkey M2 shown
here; see Fig. 5 for maps in M1). In these interpolated neurophysiology maps, vertices that were not within 3 mm of at least three physiology sites were masked, and the same
neurophysiology mask was applied to fMRI maps. To aid visual comparison, color values were histogram equalized across all three MUA/LFP/fMRI maps such that colors are not on an
absolute scale.
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individual LFP waveforms in a window 50 –200 ms following image onset
was computed using Welch’s moving average method with a window size
of 128 samples (sampling rate � 1 kHz). Average power in six different
spectral bands (0.5–10, 16 –24, 24 – 40, 40 – 80, 80 –160, and 160 –300 Hz)
was used for comparison to fMRI maps.

In all manipulations requiring optimization of a free parameter [i.e.,
(1) smoothing, (8) active, (9) selective, (13) scale/rotate/translate/all, and
(14) decompression], parameter values were found for half of the sites,
and reported correlation values were independently computed on the
remaining, withheld half of sites. To ensure a true split of fMRI voxels,

Figure 5. Correspondence between spatially smoothed neurophysiology maps and fMRI in monkey M1. Same format as Figure 4 but for monkey M1.

Issa et al. • Large-Scale Neural Maps Underlying fMRI J. Neurosci., September 18, 2013 • 33(38):15207–15219 • 15213



sites that were sampling the same voxel were
forced to be exclusively in the training or test-
ing set and not distributed in both. In general,
parameter values were optimized indepen-
dently for each contrast map in each animal
yielding 12 values. We also performed the spa-
tial smoothing analysis using a single smooth-
ing width (median of individual map FWHMs)
for all 12 maps and found that this fixed
smoothing model gave similar results to indi-
vidually optimized smoothing kernels (Fig. 6B,
rightmost bars).

Statistics
Spearman’s rank correlation was used to com-
pare neurophysiology and fMRI maps. This
measure is less susceptible to monotonic nonlin-
earities (e.g., saturation) in neurophysiology–
fMRI relationships; however, similar results were
obtained using a linear Pearson correlation coef-
ficient. Since our goal was to predict fMRI cate-
gory selectivity maps, all correlations were
normalized by the maximum achievable ex-
plained variance given the reliability of the fMRI
maps (Op de Beeck et al., 2008). This normalized
correlation measure is termed � and is used
throughout the text and figures. It will reach a
value of 1.0 for a perfect model of fMRI maps.
The reliability of fMRI maps was determined by
computing, for the voxels that contained physi-
ology sites, the correlation between different runs
collected for the same fMRI contrast (split halves
approach, n � 30 iterations) and was corrected
for the smaller number of trials using the Spear-
man Brown correction according to N*r/(1 �
(N � 1)*r) where N � 2. To estimate a lower
bound on the spatial resolution of information in
MUA, LFP, and fMRI maps (Fig. 2), high-pass
filtered maps were obtained by subtracting
smoothed maps from raw maps, and the split
halves correlation of the high-passed maps was
computed. The point where split halves correla-
tions between high-passed maps dropped below
50% height provided an estimate of the spatial
resolution at which reproducible structure is con-
tained in object selectivity maps.

Results
Neurophysiological sampling of
fMRI volumes
Our goal was to construct large-scale neu-
rophysiological maps of IT for compari-
son with fMRI maps obtained previously
in the same subjects (Op de Beeck et al.,
2008). This entailed sampling across the
posterior-to-anterior extent of IT (�15
mm) at subvoxel (�1.25 mm) resolution.
MUA and LFP recordings were localized
in 3D with high resolution and in vivo us-
ing a stereo microfocal x-ray system de-
veloped previously (Cox et al., 2008). Using a common skull-
based reference frame, physiology sites were coregistered to
functional MRIs for performing direct spatial comparisons (see
Materials and Methods). We measured responses to a set of
visually-presented images drawn from six categories that in-
cluded faces and synthetic objects as previous work had shown
topographic organization for contrasts of these shape classes

at the level of fMRI (Tsao et al., 2003; Op de Beeck et al., 2008).
Measuring neurophysiological maps using the same object
contrasts allowed us to ask whether the structures that appear
in fMRI can be explained by neurophysiology maps obtained
with the same images. Furthermore, x-ray-based electrode lo-
calization allowed us to construct precise neurophysiological
maps and extend previous work in IT (Kiani et al., 2007; Bell et
al., 2011).

A

B

Figure 6. Effect of spatial smoothing and alternative neurophysiology-to-fMRI transforms on neurophysiology–fMRI correla-
tions. A, The improvement of neurophysiology–fMRI correlations with spatial smoothing peaked at 3.5 mm (vertical black dashed
line) for MUA maps (upper left) and at 3.2 mm (vertical gray dashed line) for LFP maps (lower left). Spatial smoothing led to
significant improvements in all 12 measured MUA–fMRI correlations (upper right; points scatter above diagonal), but less im-
provement in LFP–fMRI correlations with smoothing was observed (lower right). B, A number of alternative neurophysiology-to-
fMRI transforms were tested in addition to spatial smoothing. Transforms could be approximately divided into those that tested
different time windows of MUA responses or different frequency bands of the LFP, tested different selectivity metrics, subselected
physiology sites, and modified spatial projections of neurophysiology data onto fMRI volumes. In most cases, little improvement
was observed for neurophysiology–fMRI correlations above the baseline level computed by correlating raw MUA signals with fMRI
(gray band) except when smoothing was applied. The strongest exception is that raw LFP–fMRI correlations began at a higher level
than raw MUA–fMRI correlations. However, after spatial smoothing, MUA and LFP correlations with fMRI reached similar levels.
Finally, using a fixed smoothing kernel (rightmost bars) gave similar correlations as optimizing smoothing kernels on a per map
basis. Error bars reflect SEM across the 12 maps tested.
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To illustrate the data used in the analyses below, three repre-
sentative fMRI voxels are highlighted in Figure 1A. In this exam-
ple, physiology sites sampled within each voxel were tested for
their preference for faces versus nonface objects, a contrast that is
commonly used in human and monkey fMRI studies (Kanwisher
et al., 1997; Tsao et al., 2003). In this particular contrast map, we
obtained dense sampling of a few voxels, but across all voxels in
the 12 contrast maps collected, two sites were collected per voxel
on average (Fig. 1B). An important issue is that neurophysiolog-
ical maps were constructed serially such that recordings were
made on different days and hence under slightly different condi-
tions (e.g., different electrodes) unlike fMRI volumes where all
voxels were measured nearly simultaneously. Nonetheless, we
found no significant difference in correlations between nearby
sites collected on the same day and between nearby sites collected
on different days (�within day � 0.31 vs �between day � 0.36, p � 0.67,
nwithin day � 1586, nbetween day � 1957, pairs of sites separated by
�500 micrometers; within penetration distances were calculated
using microdrive readings that are of high spatial accuracy (�1
�m), while between-day distances relied on x-ray-based position
estimates) with absolute correlation levels similar to those ob-
tained in previous studies comparing patterns of image selectivity
across nearby sites (Gochin et al., 1991; Fujita et al., 1992;
Kreiman et al., 2006; Kiani et al., 2007). This suggests that we
could return to similar neurophysiological locations/conditions
across different days with the same accuracy as within the same
penetration.

Given that reliable physiological maps could be constructed
using our serial approach, an important first question to ask is at
what scale do neurophysiology and fMRI maps for each object
contrast contain reliable spatial structure. To quantify this, we
subtracted smoothed maps from raw maps yielding high-pass
filtered maps and asked whether these high-frequency residual
maps contained any reproducible structure (i.e., split-half corre-
lation � 0; see Materials and Methods). For MUA and LFP maps,
reproducible structure was present down to the smallest scales
measurable given the accuracy of the x-ray system (�200 �m)
while fMRI maps showed little reproducible structure at spatial
scales �2.5 mm (Fig. 2). Thus, neurophysiological maps of object
selectivity contained information at more detailed resolution
than fMRI maps, and the goal of this study was to determine the
relationship, if any, between information present in neurophys-
iology and fMRI maps.

The simplest possible model would be that all the physiology
sites in a voxel have the same category preference as determined
by the fMRI of that voxel. This simple model was clearly false; for
example, we found that, even in voxels that were highly face
selective, sites within the same voxel had varying preferences for
nonface objects versus faces. Across our maps, this heterogeneity
led to low overall correlations between site and voxel preferences
at the same 3D location (median � � 0.26, average of n � 12
object contrast maps; � refers to the normalized correlation be-
tween fMRI and neurophysiology maps when adjusted for noise
in fMRI maps, see Materials and Methods). Alternatively, there
may exist a mass-action correspondence between the distribution
of underlying neurophysiological preferences and the final fMRI
“report” of the voxel (i.e., the face selective voxels may contain
more face selective sites while the object selective voxels may
contain more object selective sites). Perhaps surprisingly, com-
puting this report as the fraction of face/object-preferring sites
(termed voxel purity) or the mean selectivity of all sites in each
voxel did not lead to any improvement in neurophysiology–fMRI
correlations despite averaging out neurophysiological heteroge-

neity within a voxel (purity: median � � 0.17, p � 0.17; average
selectivity: median � � 0.26, p � 1, n � 12). Importantly, voxel-
based averaging or purity measures only pool information at a
relatively local scale (1.25 mm) compared with the resolution of
reliable information present in fMRI maps (2.5 mm) (Fig. 2),
suggesting the need for spatial averaging at larger scales.

Spatial smoothing of neurophysiology maps
At larger spatial scales, fMRI and neurophysiology maps shared
similar structure. For example, the faces versus nonface objects
neurophysiology map demonstrated a posterior-to-anterior ar-
rangement of face selective clusters similar to those seen under
fMRI (Fig. 3). To test the spatial scale of the relationship between
neurophysiology and fMRI, we smoothed neurophysiology maps
at different resolutions using a 3D Gaussian kernel. We found
that spatially smoothing MUA maps more than doubled MUA–
fMRI correlations on average (�smooth � 0.57 vs �raw � 0.26, p �
0.002, n � 12) and produced neurophysiology maps that were
often visually difficult to distinguish from fMRI maps across
some object contrast maps— even when those object contrast
maps were very different from each other (Figs. 4, 5). A fixed
smoothing transform (FWHM � 3.5 mm) performed as well as a
smoothing kernel optimized on a per map basis (Fig. 6B, �smooth �
0.57 vs �fixed smooth � 0.52, p � 0.58, n � 12). Thus, spatial
smoothing was a generic transform that generalized across the
particular choice of fMRI contrast whether derived from more
natural (e.g., face vs object) or from synthetic (e.g., smoothie vs
spikie) object contrasts.

Two possible explanations for this improvement with spatial
smoothing are that averaging across sites simply decreased noise
inherent to neural firing rates or that smoothing more accurately
captured the transform from neurophysiological activity to fMRI
signals. Given that neurophysiology maps were already highly
reproducible across trial splits such that neural noise was not a
major limiting factor (�MUA,MUA raw � 0.84, and pooling more
trials had little added benefit, �MUA,MUA smooth � 0.96), we sug-
gest that the primary effect of spatial smoothing was not to reduce
noise but to accurately model the fMRI signal. Even when nor-
malizing for the measured improvement in neurophysiology
SNR, MUA–fMRI correlations with smoothing remained signif-
icantly higher than MUA–fMRI correlations without smoothing
(SNR normalized �smooth � 0.49 vs �raw � 0.25, p � 0.003, n � 12
object contrast maps).

MUA maps smoothed at an intermediate scale of 2–5 mm
were the best predictors of fMRI maps in all object contrasts that
we collected (12 object contrast maps across two monkeys) in-
cluding those for synthetic objects (i.e., smoothies vs spikies,
smoothies vs cubies, and cubies vs spikies) (Fig. 6A). MUA–fMRI
correlations peaked at 3.5 mm smoothing widths (FWHM) (Fig.
6A), consistent with the scale where fMRI maps begin to contain
reliable information (Fig. 2) but not at larger scales that reduced
noise but did not accurately model the fMRI signal. In a
follow-up analysis, we searched our fMRI maps for local regions
(�2 mm) with high spatial frequency content (p � 0.01, split
halves correlation of highpass-filtered fMRI maps using FWHM �
1.25 mm) using a spotlight analysis. Even in these local regions,
smoothing MUA maps at 2–5 mm spatial scales was optimal
(median � 4.7 mm), and no trend between fMRI power at high
spatial frequencies and optimal neurophysiology smoothing
widths was observed (� � 0.01, p � 0.96, n � 43), suggesting that
stronger higher spatial frequency structure in fMRI did not cor-
respond to the high resolution content in neurophysiology maps.
Such an analysis, however, may require improved fMRI signal-
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to-noise ratios at the 1–2 mm scale as noise may have over-
whelmed our fMRI signal at high spatial frequencies even though
some information was still present at these frequencies (Fig. 2).

Smoothing fMRI volumes (FWHM � 2.5 mm) did signifi-
cantly average out noise in our fMRI maps increasing their
reliability (�fMRI,fMRI unsmoothed � 0.45 vs �fMRI,fMRI 2.5 mm smoothed �
0.78, p � 0.001, n � 12), and for this reason smoothing is a typical
procedure in fMRI studies (Op de Beeck et al., 2008; Tsao et al.,
2008b). We used smoothed fMRI maps under the logic that lim-
ited information was contained at scales smaller than 2.5 mm
(Fig. 2). However, we also performed analyses using raw fMRI
data to determine whether using smoothed fMRI maps may have
biased our estimates of the optimal neurophysiology-to-fMRI
kernel. We found nearly identical optimal neurophysiology
smoothing widths regardless of whether the resulting smoothed
physiology map was compared with raw (unsmoothed) fMRI data
or smoothed fMRI volumes (FWHMraw � 4.4 vs FWHM2.5 mm �
3.5, p � 0.91, n � 12). And absolute fMRI-neurophysiology corre-
lation levels were similar when using unsmoothed fMRI data as
when using smoothed fMRI data after correcting for the reliability of
these two different types of fMRI maps (�raw � 0.61 vs �2.5 mm �
0.57, p � 1, n � 12).

Finally, we also measured LFP–fMRI correlations across mul-
tiple spatial scales. Baseline LFP–fMRI correlations (i.e., without
any spatial smoothing) were higher than baseline MUA–fMRI
correlations (�LFP � 0.47 vs �MUA � 0.26, p � 0.08, n � 12) and
only modestly improved with optimal spatial smoothing (�smooth �
0.67 vs �raw � 0.47, p � 0.11, n � 12) (Fig. 6A). Slightly less spatial
smoothing was required for optimal correlation of LFP maps and
fMRI maps (3.2 mm) than was required for optimal correlation
of MUA maps and fMRI maps (3.5 mm), although this difference
was not significant (p � 0.35, n � 12) (Fig. 6A). Thus, MUA and
LFP signals were both highly predictive of fMRI once smoothed
at similar (3.5 mm) scales (�MUA � 0.57, �LFP � 0.67, p � 0.71,
n � 12).

Alternative neurophysiology to fMRI transforms
Besides spatial filtering, many factors may contribute to the map-
ping from neurophysiology to fMRI signals. For example, al-
though responses may be linear in some regime (Rees et al.,
2000), there may be an intervening nonlinearity (e.g., satura-
tion), or fMRI voxels near the gray matter or away from large
draining veins in the sulcus may be more reliable indicators of
nearby neurophysiological signals (Duong et al., 2001; Goense
and Logothetis, 2006; Olman et al., 2007). Also, there may be a
slight scaling, rotation, or translation that could improve coreg-
istration between physiology sites and fMRI voxels. Finally, pre-
vious work has shown that different aspects of the neural
response (e.g., gamma band of the LFP) (Logothetis et al., 2001;
Hermes et al., 2012) or different time windows (e.g., early feed-
forward response vs steady-state firing) (Kim et al., 2004) may
better correlate with metabolic signals such as fMRI. To test the
potential contribution of these factors, we transformed neuro-
physiology maps by using different time windows, frequency
bands, selectivity metrics, or spatial registrations (see Materials
and Methods for complete details). We also varied site and voxel
selection criteria to see if neurophysiology–fMRI correlations im-
proved in certain regions. For all transforms tested, we found no
significant improvement in neurophysiology–fMRI correlations
over baseline levels unlike the significant improvements seen
with spatial smoothing of neurophysiology maps (Fig. 6B). Fi-
nally, we found no further improvement in neurophysiology–
fMRI correlations when cascading the alternative transforms

with spatial smoothing (data not shown). Thus, for block design
fMRI experiments, the best neurophysiology-to-fMRI model was
a 3.5 mm spatially weighted average of the difference in spike rate
evoked by each of the stimulus conditions.

Discussion
We have reconstructed 3D neurophysiological maps of object
selectivity across a wide extent of IT cortex in two monkeys and
provided visual and quantitative evidence that spatial gradients of
object selectivity in fMRI reflect underlying 3D neural organiza-
tion at large (�3.5 mm) spatial scales. Spiking signals, once spa-
tially smoothed, were as predictive of fMRI maps as LFP signals.
These results extend previous work by showing that fMRI is a
spatially low passed version of neural signals as well as being a
temporally low passed version (Logothetis et al., 2001). The
widely held belief that fMRI signals are spatially blurred versions
of neurophysiology signals (Heeger and Ress, 2002; Op de Beeck,
2010) had only been inferred in previous work (Disbrow et al.,
2000; Bell et al., 2011; Hermes et al., 2012) and had yet to be
directly tested before this study. Here, we were able to make that
direct comparison because we developed and deployed a novel
x-ray-based mapping procedure to measure neural maps of ob-
ject selectivity at finer scales than previous neurophysiological
work (Tsao et al., 2006; Bell et al., 2011). With our current x-ray
mapping approach, we also found evidence of reproducible neu-
ral structure at scales smaller than those resolvable by current
fMRI techniques (Fig. 2), a result consistent with previous neu-
rophysiological work (Wang et al., 1996; Tsunoda et al., 2001;
Kreiman et al., 2006); whether these currently-fMRI-invisible
spatial structures correspond to sharp borders (i.e., modular) or
contain additional subregions is an open question for future
study.

Limitations of the spatial smoothing model
Here, we have put forth, for an fMRI block design experiment,
our best, current neurophysiology-to-fMRI model: a 3.5 mm
spatially weighted average of the difference in spike rates evoked
by each stimulus condition. This model is limited in that as fMRI
techniques improve, the exact kernel size is likely to decrease.
Furthermore, even for the present data, a spatial smoothing
transform did not explain all of the variance in fMRI maps
(�40% variance explained) (Fig. 6B). We used a normalized ex-
plained variance measure to account for the reproducibility of
data across fMRI runs that absorbs effects such as subject motion
during scanning, differences in MION strength across sessions,
or inherent inaccuracy in coregistering functional scans to base
anatomical volumes. To further ameliorate these issues, we took
precautions such as not considering fMRI volumes when there
was excessive movement, searching for optimal affine/deforma-
tion transforms, and correcting for magnetic field distortions.
Nonetheless, systematic errors may persist depending on the se-
verity of geometric distortions in fMRI maps. One important
concern is that fMRI and neurophysiology maps were collected
years apart. During this time, the brain may have changed in its
anatomical or functional structure. Consistent with a longitudi-
nal study finding little change in macaque brain size after five
years of age (Malkova et al., 2006), we found almost no change in
brain size in the two monkeys we tested (see Materials and Meth-
ods). Furthermore, our previous work showed that functional
maps were remarkably stable over the course of a year and over
the course of object-specific training (Op de Beeck et al., 2008). In
our study, despite the differences between fMRI and neurophys-
iology methodologies (Table 1; see Materials and Methods), a
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strong correspondence was observed between these modalities.
Nevertheless, our absolute correlation numbers (0.6 – 0.7 after
smoothing) should be taken as a lower bound on the correspon-
dence between neurophysiology and fMRI, and our estimate of
the optimal smoothing kernel (3.5 mm) should be taken as an
upper bound.

Another limitation is that viewing each voxel as an identical
lowpass filter is possibly an oversimplification. Each voxel con-
tains a unique vascular pattern leading to a complicated spatio-
temporal filter that, because of voxel undersampling, potentially
aliases high-frequency spatial information into low spatial fre-
quencies (Kriegeskorte et al., 2010). Such a neurovascular filter
would allow decoding of information present in high spatial fre-
quencies (Kamitani and Tong, 2005; Haynes and Rees, 2006)
with the drawback that neural signals are distributed in space and
not easily recoverable using a simple transform. While we do not
dispute the possibility of aliasing effects in the fMRI signal, our
results show that a large part of the fMRI signal reflects low spatial
frequency power in neurophysiology maps—as quantified by our
model.

Comparison to previous neurophysiology–fMRI work
Previous work examining the relationship between neurophysi-
ology and fMRI signals over time instead of across space found
that fMRI signals were slightly more correlated to LFP than to
MUA signals (Logothetis et al., 2001), but another study found
no difference (Kim et al., 2004). In our spatial comparison, the
higher correlation of fMRI with LFP signals (Fig. 6A) was nearly
eliminated once raw MUA signals were smoothed to broader
spatial scales more comparable to LFP and fMRI signals (Fig. 6A).
In primary visual cortex, studies have estimated that fMRI maps
contain information at the 2– 4 mm scale (Shmuel et al., 2007).
These estimates were not based on direct neural recordings in V1
but on inference from temporally varying stimuli that leveraged
the known architecture of V1 (Engel et al., 1997). Previous esti-
mates of the point spread function in 3T fMRI and 7T fMRI were
3.5 mm (Parkes et al., 2005) and 2.34 mm (Shmuel et al., 2007),

respectively, providing a lower bound for comparison to our
bound of 3.5 mm obtained with 3T fMRI. These numbers do not
achieve the biological lower limit set by the hemodynamic re-
sponse function (�1 mm) measured in optical imaging studies
(Sirotin et al., 2009). So in principle, fMRI can resolve increas-
ingly finer spatial detail if a single plane is imaged instead of the
whole brain or if sensitivity is increased for small vessels instead
of large veins (Fukuda et al., 2006; Goense and Logothetis, 2006;
Goense et al., 2007; Kim and Fukuda, 2008). The primary goal of
the present work was not to determine the smallest scale of struc-
ture in fMRI maps but to determine the degree to which structure
is shared between fMRI maps and underlying neurophysiology.
We found that down to the scale where our fMRI maps contained
information (�2.5 mm), these maps were highly predictive of the
structures produced by smoothing underlying neurophysiology.

Implications for current fMRI work
Our technique is comparable to standard fMRI done in humans
and monkeys using 3T magnets (Tsao et al., 2003, 2008a; Pitcher
et al., 2011). We matched conditions (block design, gradient
echo) commonly used while deploying MION, a contrast agent
that improves signal-to-noise ratios (Leite et al., 2002) and may
improve resolution over more standard BOLD imaging (Kim and
Fukuda, 2008; Smirnakis et al., 2007). Our results demonstrate
the utility of this standard scanning methodology in revealing the
large scale organization in higher level visual areas approaching
the current 3.5 mm limit of fMRI at 3T (Parkes et al., 2005), and
our findings may explain why face selective regions in IT (or “face
patches”) have been consistently detected in fMRI studies (Tsao
et al., 2003; Bell et al., 2009; Pinsk et al., 2009; Tsao et al., 2008a).
In our previous study, the neurophysiologically determined di-
ameter of the posterior lateral face patch in two monkeys was 3.75
and 5 mm, respectively, and the middle lateral face patch appears
to be of similar size or larger (Tsao et al., 2008a; Issa and DiCarlo,
2012). A neurophysiological structure of this size contains energy
at spatial frequencies that would easily pass through the spatial
smoothing kernel determined in this study (Gaussian, FWHM �

Figure 7. Limitations of fMRI in distinguishing spatial organization at the neurophysiological level. Simulation of how very different putative neurophysiological spatial maps (left) would appear
as similar spatial fMRI profiles (right) when smoothed with a 3.5 mm (FWHM) Gaussian kernel as estimated in this study. Large neurophysiological structures with a graded Gaussian fall-off (black
curve, FWHM � 3.5 mm) are the most faithfully reflected in both shape and size in fMRI. However, a region with heterogeneous (i.e., “salt-and-pepper”) neural selectivity (red, FWHM � 3.5 mm)
will also appear as a Gaussian in fMRI, and a region with a sharp modular boundary (blue, width � 3.5 mm) will have a similar graded profile in fMRI. Thus, graded, sharp, and heterogeneous regions
are difficult to distinguish as they have similar amplitude and shape under fMRI. Finally, small single-peaked (purple, width � 0.5 mm) regions will appear to be much wider under fMRI although
reduced in amplitude, and multi-peaked regions (green, width � 1.5 mm, 1 cycle/mm) will appear as single-peaked in fMRI and also have reduced amplitude.
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3.5 mm) and would be visible in fMRI at a size similar to its true
underlying size (Fig. 7).

However, a more precise description of the neural organiza-
tion of face versus object maps given our observations (Fig. 3) is
that they contain salt-and-pepper structure locally as well as bi-
ases in face selectivity at large scales. Under this biased salt-and-
pepper model, fMRI smoothes out local heterogeneity but
provides an accurate picture of large-scale face selectivity gradi-
ents. We speculate that the contrast (Smoothies vs Cubies; Figs. 4,
5) that gave the weakest correlations in both monkeys may have
contained weak large-scale structure possibly because smoothies
and cubies may be similar in shape space.

Finally, we have only shown that neurophysiology maps con-
tain reliable structure at current fMRI-invisible scales in the sta-
tistical sense and have not provided an explicit description (e.g.,
columnar) of these fine scale structures. To do so would require
denser, more even sampling and may require using different im-
ages that expose fine scale organization. Our spatial blurring
model predicts that many other patterns of neurophysiological
organization besides salt-and-pepper organization would appear
to have a similar spatial fMRI profile as a large face selective
region. For example, our models predict that signals that change
selectivity rapidly across space (i.e., repeated motifs at fine scales
such as orientation columns) will appear as relatively pure in
fMRI as will impure (salt-and-pepper) regions (Fig. 7). Also, it
predicts that a region of highly pure selectivity (module) much
smaller than a face patch (0.5 mm) will appear to be much larger
in fMRI (�3 mm) and could be confused with a large face patch
(Fig. 7). These effects of spatial smoothing suggest cautious inter-
pretation of regions of interest or “modules” when localized us-
ing fMRI, as many of the possible underlying neurophysiological
patterns are not “modular” in the sense that they can be far from
pure and need not have well-defined boundaries. Nonetheless,
fMRI maps of object selectivity should be considered rough but
still invaluable guides to the spatial organization of neural selec-
tivity in IT.
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Duong TQ, Kim DS, Uğurbil K, Kim SG (2001) Localized cerebral blood
flow response at submillimeter columnar resolution. Proc Natl Acad Sci
U S A 98:10904 –10909. CrossRef Medline
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