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ABSTRACT 47	

 48	

Primates—including humans—can typically recognize objects in visual images at a 49	

glance, even in the face of naturally occurring identity preserving image transformations such as 50	

changes in viewpoint. A primary neuroscience goal is to uncover neuron-level mechanistic 51	

models that quantitatively explain this behavior, not only predicting average primate 52	

performance, but also predicting primate performance for each and every image. Here, we 53	

applied this stringent behavioral prediction test to the leading mechanistic models of primate 54	

vision (specifically, deep, convolutional, artificial neural networks; ANNs) by directly 55	

comparing their behavioral patterns, at high resolution over a large number of object 56	

discrimination tasks, against those of humans and rhesus macaque monkeys. Using high-57	

throughput data collection systems for human and monkey psychophysics, we collected over one 58	

million behavioral trials for 2400 images of 24 broadly sampled basic-level objects, resulting in 59	

276 binary object discrimination tasks. Consistent with previous work, we observed that state-of-60	

the-art deep, feed-forward, convolutional ANNs trained for visual categorization (termed 61	

DCNNIC models) accurately predicted primate patterns of object-level confusion (e.g. how often 62	

a camel is confused with a dog, on average). However, when we examined behavioral 63	

performance for individual images within each object discrimination task, we found that all of 64	

the DCNNIC models were significantly non-predictive of primate performance. We found that 65	

this prediction failure was not accounted for by simple image attributes, nor was it rescued by 66	

simple model modifications. These results show that current DCNNIC models cannot account for 67	

the image-level behavioral patterns of primates, even when images are not optimized to be 68	

adversarial. This suggests that new ANN models are needed to more precisely capture the neural 69	

mechanisms underlying primate object vision, and that high-resolution, large-scale behavioral 70	

metrics could serve as a strong constraint for discovering such models. 71	

 72	

  73	

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/240614doi: bioRxiv preprint first posted online Jan. 1, 2018; 

http://dx.doi.org/10.1101/240614
http://creativecommons.org/licenses/by-nc-nd/4.0/


SIGNIFICANCE STATEMENT 74	

 75	

Recently, specific feed-forward deep convolutional artificial neural networks (ANNs) 76	

models have dramatically advanced our quantitative understanding of the neural mechanisms 77	

underlying primate core object recognition. In this work, we tested the limits of those ANNs by 78	

systematically comparing the behavioral responses of these models with the behavioral responses 79	

of humans and monkeys, at the resolution of individual images. Using those high-resolution 80	

metrics, we found that all tested ANN models significantly diverged from primate behavior. 81	

Going forward, these high-resolution, large-scale behavioral metrics could serve as a strong 82	

constraint for discovering better ANN models of the primate visual system. 83	

  84	
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INTRODUCTION 85	

 86	

Primates—both human and non-human—can typically recognize objects in visual images 87	

at a glance, even in the face of naturally occurring identity-preserving transformations such as 88	

changes in viewpoint. This view-invariant visual object recognition ability is thought to be 89	

supported primarily by the primate ventral visual stream (DiCarlo, Zoccolan et al. 2012), a deep 90	

hierarchical neural network (NN) of visual cortical areas. Thus, a primary neuroscience goal is to 91	

construct computational models that quantitatively explain the mechanisms underlying this 92	

ability, i.e. to discover artificial neural networks (ANNs) that accurately predict neuronal firing 93	

rate responses at all levels of the ventral stream, as well as its behavioral output. With respect to 94	

this goal, specific models within a large family of deep, convolutional neural networks (DCNNs) 95	

have been put forth as the leading ANN models of the ventral stream (Yamins and DiCarlo 96	

2016). Specifically, the best such models are DCNNs optimized by supervised training on large-97	

scale category-labeled image-sets (ImageNet) to match human-level object categorization 98	

performance (Krizhevsky, Sutskever et al. 2012, LeCun, Bengio et al. 2015); we refer to this 99	

sub-family of DCNN models as DCNNIC models (to denote ImageNet-Categorization pre-100	

training), so as to distinguish them from all possible models in the DCNN family, and more 101	

broadly, from the super-family of all ANNs. To date, it has been shown that DCNNIC models 102	

display internal feature representations that are highly similar to neuronal representations in mid 103	

(V4) and high level cortical (IT) areas of the primate ventral visual stream (Yamins, Hong et al. 104	

2013, Cadieu, Hong et al. 2014, Khaligh-Razavi and Kriegeskorte 2014, Yamins, Hong et al. 105	

2014), and they also exhibit output patterns that are remarkably similar to the behavioral patterns 106	

of pairwise object confusions of primates in the domain of basic-level core object recognition 107	

(Rajalingham, Schmidt et al. 2015). As such, DCNNIC models may provide a quantitative 108	

account of the neural mechanisms underlying primate core object recognition behavior. 109	

 110	

However, several studies have shown that the DCNNIC models can diverge drastically 111	

from humans in object recognition behavior, especially with regards to particular images 112	

optimized to be adversarial to these networks (Goodfellow, Shlens et al. 2014, Nguyen, Yosinski 113	

et al. 2015). Recent work demonstrated that such adversarial images are likely not isolated 114	

instances, suggesting that DCNNIC models may not match humans across larger image domains 115	
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(Goodfellow, Shlens et al. 2014). Related work has shown that specific image distortions (e.g. 116	

adding noise, blurring, inverting) are disproportionately challenging to current DCNNs, as 117	

compared to humans (Dodge and Karam 2017, Geirhos, Janssen et al. 2017, Hosseini, Xiao et al. 118	

2017). Such image-specific failures of the current ANN models would likely not be captured by 119	

object-level behavioral metrics, such as the pattern of pairwise object confusions mentioned 120	

above (Rajalingham, Schmidt et al. 2015), that are computed by pooling over hundreds of 121	

images and thus are not sensitive to the fact that some images of an object are more challenging 122	

than other images of the same object. That limitation of prior work is due largely to data scale: 123	

reliable behavioral performance estimation requires many (20+) repeated measurements to assess 124	

behavioral discriminability per experimental condition, and large-scale measurements at the 125	

image-level are comprised of many such conditions (e.g. 2400 images with 23 distractor choices 126	

per image results in 55200 conditions for measuring discrimination performance). To overcome 127	

this limitation of prior work, we expanded the scale of our data collection to approximately 1.8 128	

million trials from humans and monkeys, and we developed new behavioral metrics to reliably 129	

measure and characterize behavior at the resolution of images. Here, we directly compared 130	

leading DCNN models to primates—human and rhesus macaque monkeys—over the domain of 131	

core object recognition behavior at the high resolution of individual images. 132	

 133	

We focused on “core invariant object recognition”—the ability to identify objects in 134	

visual images in the central visual field during a single, natural viewing fixation (DiCarlo and 135	

Cox 2007, DiCarlo, Zoccolan et al. 2012), operationalized as images of high view uncertainty 136	

presented in the central 10° of the visual field for durations under 200ms. For this study, we 137	

further restricted our sampled object discrimination tests within that domain to “basic-level” 138	

object discriminations, as defined previously (Rosch, Mervis et al. 1976), and to rigid object 139	

transformations.  Within this domain, we collected over a million behavioral trials to make large-140	

scale, high-resolution measurements of human and monkey behavior using high-throughput 141	

psychophysical techniques—including a novel home-cage behavioral system for monkeys. These 142	

data enabled us to systematically compare all systems at progressively higher resolution. At 143	

lower resolutions, we replicated previous findings that humans, monkeys, and DCNNIC models 144	

all share a common pattern of object level confusion (Rajalingham, Schmidt et al. 2015). 145	

However, at the high resolution of individual images, we found that the behavior of each and 146	
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every one of the DCNNIC models was significantly different from human and monkey behavior. 147	

This model prediction failure could not be easily rescued by modifications, such as primate-like 148	

retinal input sampling or additional model training. Taken together, these results show that 149	

current DCNNIC models do not fully account for the image-level behavioral patterns of primates, 150	

even when images are not optimized to be adversarial, suggesting that new ANN models are 151	

needed to more precisely capture the neural mechanisms underlying primate object vision. To 152	

this end, large-scale, high-resolution behavioral metrics such as those produced here could serve 153	

as a strong top-down constraint for efficiently discovering such models. 154	

 155	

MATERIALS & METHODS 156	

 157	

Visual images 158	

We examined basic-level, core object recognition behavior using a set of 24 broadly-159	

sampled objects that we previously found to be highly reliably labeled by independent human 160	

subjects, based on the definition of basic-level proposed by (Rosch, Mervis et al. 1976). For each 161	

object, we generated 100 naturalistic synthetic images by first rendering a 3D model of the object 162	

with randomly chosen viewing parameters (2D position, 3D rotation and viewing distance), and 163	

then placing that foreground object view onto a randomly chosen, natural image background.  To 164	

do this, each object was first assigned a canonical position (center of gaze), scale (~2 degrees) 165	

and pose, and then its viewing parameters were randomly sampled uniformly from the following 166	

ranges for object translation ([-3,3] degrees in both h and v), rotation ([-180,180] degrees in all 167	

three axes) and scale ([x0.7, x1.7]. Backgrounds images were sampled randomly from a large 168	

database of high-dynamic range images of indoor and outdoor scenes obtained from Dosch 169	

Design (www.doschdesign.com). This image generation procedure enforces invariant object 170	

recognition, rather than image matching, as it requires the visual recognition system (human, 171	

animal or model) to tackle the “invariance problem,” the computational crux of object 172	

recognition (Ullman and Humphreys 1996, Pinto, Cox et al. 2008). Using this procedure, we 173	

previously generated 2400 images (100 images per object) rendered at 1024x1024 pixel 174	

resolution with 256-level gray scale and subsequently resized to 256x256 pixel resolution for 175	

human psychophysics, monkey psychophysics and model evaluation (Rajalingham, Schmidt et 176	

al. 2015). In the current work, we focused our analyses on a randomly subsampled, and then 177	
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fixed, sub-set of 240 images (10 images per object; here referred to as the “primary test 178	

images”). Figure 1A shows the full list of 24 objects, with two example images of each object. 179	

 180	

Because all of the images were generated from synthetic 3D object models, we had 181	

explicit knowledge of the viewpoint parameters (position, size, and pose) for each object in each 182	

image, as well as perfect segmentation masks. Taking advantage of this feature, we characterized 183	

each image based on these high-level viewpoint attributes as well as its low-level image 184	

attributes (i.e. pixel-wise distributional statistics computed from the final rendered image). 185	

Viewpoint attributes consisted of size, eccentricity and relative pose of the object in the image. 186	

For each synthetic object, we first defined its “canonical” 3D pose vector, based on independent 187	

human judgments. To compute the relative pose (RP) attribute of each image, we estimated the 188	

difference between the object’s 3D pose and its canonical 3D pose. Pose differences were 189	

computed as distances in unit quaternion representations: the 3D pose (rxy, rxz, ryz) was first 190	

converted into unit quaternions, and distances between quaternions 𝑞!, 𝑞! were estimated as 191	

 cos!! 𝑞! ∙ 𝑞!  (Huynh 2009). Low-level image attributes included mean luminance of the 192	

image, segmentation index of the object from the background in the image, and spatial frequency 193	

content of the image background. The mean luminance was computed as the mean of all pixel 194	

intensities for each image. To compute the segmentation index, we measured the absolute 195	

difference in intensity between the mean of the pixel intensities corresponding to the object and 196	

the mean of the background pixel intensities in the vicinity of the object (specifically, within 25 197	

pixels of any object pixel, analogous to computing the local foreground-background luminance 198	

difference of a foreground object in an image). To compute an attribute characterizing the 199	

background spatial frequency (BSF), we first converted each image’s background (prior to 200	

placing the foreground object) into the frequency domain using a 2D FFT, which we summarized 201	

using the spectral centroid. Figure 5C shows example images with varying attribute values for 202	

the three viewpoint attributes and the three low-level attributes. 203	

 204	

Core object recognition behavioral paradigm 205	

As in our previous work (Rajalingham, Schmidt et al. 2015), the behavioral task 206	

paradigm consisted of a interleaved set of binary discrimination tasks.  Each binary 207	

discrimination task is an object discrimination task between a pair of objects (e.g. elephant vs. 208	
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bear). Each such binary task is balanced in that the test image is equally likely (50%) to be of 209	

either of the two objects.  On each trial, a test image is presented, followed by a choice screen 210	

showing canonical views of the two possible objects (the object that was not displayed in the test 211	

image is referred to as the “distractor” object, but note that objects are equally likely to be 212	

distractors and targets).  Here, 24 objects were tested, which resulted in 276 binary object 213	

discrimination tasks.  To neutralize feature attention, these 276 tasks are randomly interleaved 214	

(trial by trial), and the global task is referred to as a basic-level, core object recognition task 215	

paradigm.   216	

 217	

Testing human behavior 218	

All human behavioral data presented here were collected from 1476 human subjects on 219	

Amazon Mechanical Turk (MTurk) performing this task paradigm. Subjects were instructed to 220	

report the identity of the foreground object in each presented image from among the two objects 221	

presented on the choice screen (Fig 1B).  Because all 276 tasks were interleaved randomly (trial-222	

by-trial), subjects could not deploy feature attentional strategies specific to each object or 223	

specific to each binary task to process each test image.  224	

 225	

Figure 1B illustrates the time course of each behavioral trial, for a particular object 226	

discrimination task (zebra versus dog). Each trial initiated with a central black point for 500 ms, 227	

followed by 100 ms presentation of a test image containing one foreground object presented 228	

under high variation in viewing parameters and overlaid on a random background, as described 229	

above (see Visual images above). Immediately after extinction of the test image, two choice 230	

images, each displaying a single object in a canonical view with no background, were shown to 231	

the left and right. One of these two objects was always the same as the object that generated the 232	

test image (i.e., the correct object choice), and the location of the correct object (left or right) was 233	

randomly chosen on each trial. After clicking on one of the choice images, the subject was 234	

queued with another fixation point before the next test image appeared. No feedback was given; 235	

human subjects were never explicitly trained on the tasks. Under assumptions of typical 236	

computer ergonomics, we estimate that images were presented at 6–8° of visual angle in size, 237	

and the choice object images were presented at ±6–8° of eccentricity along the horizontal 238	

meridian. 239	
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 240	

We measured human behavior using the online Amazon MTurk platform (see Figure 1C), 241	

which enables efficient collection of large-scale psychophysical data from crowd-sourced 242	

“human intelligence tasks” (HITs).  The reliability of the online MTurk platform has been 243	

validated by comparing results obtained from online and in-lab psychophysical experiments 244	

(Majaj, Hong et al. 2015, Rajalingham, Schmidt et al. 2015). We pooled 927,296 trials from 245	

1472 human subjects to characterize the aggregate human behavior, which we refer to as the 246	

“pooled” human (or “archetypal” human). Each human subject performed only a small number 247	

of trials (~xx) on a subset of the images and binary tasks. All 2400 images were used for 248	

behavioral testing, but in some of the HITs, we biased the image selection towards the 240 249	

primary test images (1424±70 trials/image on this subsampled set, versus 271±93 trials/image on 250	

the remaining images, mean ± SD) to efficiently characterize behavior at image level resolution. 251	

Images were randomly drawn such that each human subject was exposed to each image a 252	

relatively small number of times (1.5±2.0 trials/image per subject, mean ± SD), in order to 253	

mitigate potential alternative behavioral strategies (e.g. “memorization” of images) that could 254	

potentially arise from a finite image set. Behavioral metrics at the object-level (B.O1, B.O2, see 255	

Behavioral Metrics) were measured using all 2400 test images, while image-level behavioral 256	

metrics (B.I1n, B.I2n) were measured using the 240 primary test images.  (We observed 257	

qualitatively similar results for those metrics using the full 2400 test images, but we here focus 258	

on the primary test images as the larger number of trials leads to lower noise levels). 259	

 260	

Four other human subjects were separately recruited on MTurk to each perform a large 261	

number of trials on the same images and tasks (53,097±15,278 trials/subject, mean ± SD). 262	

Behavioral data from these four subjects was not included in the characterization of the pooled 263	

human described above, but instead aggregated together to characterize a distinct held-out 264	

human pool. This held-out human pool serves to provide a “gold-standard” for benchmarking all 265	

other candidate models.	266	

 267	

Testing monkey behavior 268	

Five adult male rhesus macaque monkeys (Macaca mulatta, subjects M, Z, N, P, B) were 269	

tested on the same basic-level, core object recognition task paradigm described above, with 270	
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minor modification as described below.  All procedures were performed in compliance with 271	

National Institutes of Health guidelines and the standards of the Massachusetts Institute of 272	

Technology Committee on Animal Care and the American Physiological Society. To efficiently 273	

characterize monkey behavior, we used a novel home-cage behavioral system developed in our 274	

lab (termed MonkeyTurk, see Fig. 1C). This system leveraged a tablet touchscreen (9” Google 275	

Nexus or 10.5” Samsung Galaxy Tab S) and used a web application to wirelessly load the task 276	

and collect the data (code available at https://github.com/dicarlolab/mkturk). Analogous to the 277	

online Amazon Mechanical Turk, which allows for efficient psychophysical assays of a large 278	

number (hundreds) of human users in their native environments, MonkeyTurk allowed us to test 279	

many monkey subjects simultaneously in their home environment.  Each monkey voluntarily 280	

initiated trials, and each readily performed the task a few hours each day that the task apparatus 281	

was made available to it. At an average rate of ~2,000 trials per day per monkey, we collected a 282	

total of 836,117 trials from the five monkey subjects over a period of ~3 months. 283	

 284	

Monkey training is described in detail elsewhere (Rajalingham, Schmidt et al. 2015). 285	

Briefly, all monkeys were initially trained on the match-test-image-to-object rule using other 286	

images and were also trained on discriminating the particular set of 24 objects tested here using a 287	

separate set of training images rendered from these objects, in the same manner as the main 288	

testing images. Two of the monkeys subjects (Z and M) were previously trained in the lab 289	

setting, and the remaining three subjects were trained using MonkeyTurk directly in their home 290	

cages and did not have significant prior lab exposure. Once monkeys reached saturation 291	

performance on training images, we began the behavioral testing phase to collect behavior on 292	

test images. Monkeys did improve throughout the testing phase, exhibiting an increase in 293	

performance between the first and second half of trials of 4%±0.9% (mean ± SEM over five 294	

monkey subjects). However, the image-level behavioral pattern of the first and second half of 295	

trials were highly consistent to each other (B.I1 consistency of 0.85±0.06, mean ± SEM over five 296	

monkey subjects), suggesting that monkeys did not significantly alter strategies (e.g. did not 297	

“memorize” images) throughout the behavioral testing phase. 298	

 299	

The monkey task paradigm was nearly identical to the human paradigm (see Figure 1B), 300	

with the exception that trials were initiated by touching a white “fixation” circle horizontally 301	
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centered on the bottom third of the screen (to avoid occluding centrally-presented test images 302	

with the hand). This triggered a 100ms central presentation of a test image, followed 303	

immediately by the presentation of the two choice images (Fig. 1B, location of correct choice 304	

randomly assigned on each trial, identical to the human task).  Unlike the main human task, 305	

monkeys responded by directly touching the screen at the location of one of the two choice 306	

images. Touching the choice image corresponding to the object shown in the test image resulted 307	

in the delivery of a drop of juice through a tube positioned at mouth height (but not obstructing 308	

view), while touching the distractor choice image resulted in a three second timeout. Because 309	

gaze direction typically follows the hand during reaching movements, we assumed that the 310	

monkeys were looking at the screen during touch interactions with the fixation or choice targets. 311	

In both the lab and in the home cage, we maintained total test image size at ~6 degrees of visual 312	

angle, and we took advantage of the retina-like display qualities of the tablet by presenting 313	

images pixel matched to the display (256 x 256 pixel image displayed using 256 x 256 pixels on 314	

the tablet at a distance of 8 inches) to avoid filtering or aliasing effects. 315	

 316	

As with Mechanical Turk testing in humans, MonkeyTurk head-free home-cage testing 317	

enables efficient collection of reliable, large-scale psychophysical data but it likely does not yet 318	

achieve the level of experimental control that is possible in the head-fixed laboratory setting. 319	

However, we note that when subjects were engaged in home-cage testing, they reliably had their 320	

mouth on the juice tube and their arm positioned through an armhole. These spatial constraints 321	

led to a high level of head position trial-by-trial reproducibility during performance of the task 322	

paradigm. Furthermore, when subjects were in this position, they could not see other animals as 323	

the behavior box was opaque, and subjects performed the task at a rapid pace 40 trials/minute 324	

suggesting that they were not frequently distracted or interrupted.  The location of the upcoming 325	

test image (but not the location of the object within that test image) was perfectly predictable at 326	

the start of each behavioral trial, which likely resulted in a reliable, reproduced gaze direction at 327	

the moment that each test image was presented. And the relatively short (but natural and high 328	

performing (Cadieu, Hong et al. 2014)) test image duration (100 ms) insured that saccadic eye 329	

movements were unlike to influence test image performance (as they generally take ~200 ms to 330	

initiate in response to the test image, and thus well after the test image has been extinguished).   331	

 332	
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Testing model behavior  333	

We tested a number of different deep convolutional neural network (DCNN) models on 334	

the exact same images and tasks as those presented to humans and monkeys. Importantly, our 335	

core object recognition task paradigm is closely analogous to the large-scale ImageNet 1000-way 336	

object categorization task for which these networks were optimized and thus expected to perform 337	

well. We focused on publicly available DCNN model architectures that have proven highly 338	

successful with respect to this benchmark over the past five years: AlexNet (Krizhevsky, 339	

Sutskever et al. 2012), NYU (Zeiler and Fergus 2014), VGG (Simonyan and Zisserman 2014), 340	

GoogleNet (Szegedy, Zaremba et al. 2013), Resnet (He, Zhang et al. 2016), and Inception-v3 341	

(Szegedy, Zaremba et al. 2013).  As this is only a subset of possible DCNN models, we refer to 342	

these as the DCNNIC (to denote ImageNet-Categorization) visual system model sub-family.  For 343	

each of the publicly available model architectures, we first used ImageNet-categorization-trained 344	

model instances, either using publicly available trained model instances, or training them to 345	

saturation on the 1000-way classification task in-house. Training took several days on 1-2 GPUs. 346	

The final feature layer of ImageNet trained DCNNIC models corresponds to the probability 347	

output of this 1000-way classification task. We adapted these ImageNet-trained models to our 348	

24-way object recognition task by re-training the final class probability layer, while holding all 349	

other layers fixed. In practice, this was done by extracting features from the penultimate layer of 350	

each DCNNIC (i.e. top-most prior to class probability layer), on the same images that were 351	

presented to humans and monkeys, and training back-end multi-class logistic regression 352	

classifiers to estimate the output class probability for each image. This procedure is illustrated in 353	

Figure 1C. To estimate the hit rate of a given image in a given binary classification task, we 354	

renormalized the 24-way class probabilities of that image, considering only the two relevant 355	

classes, to sum to one. Object-level and image-level behavioral metrics were computed based on 356	

these hit rate estimates (as described in Behavioral Metrics below). 357	

 358	

 From these analyses, we selected the most consistent DCNNIC architecture (Inception-359	

v3), fixed that architecture, and then performed post-hoc analyses in which we varied: the input 360	

image sampling, the initial parameter settings prior to training, the filter training images, the type 361	

of classifiers used to generate the behavior from the model features, and the classifier training 362	

images. To examine input image sampling, we re-trained the Inception-v3 architecture on images 363	
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from ImageNet that were first spatially filtered to match the spatial sampling of the primate 364	

retina (i.e. an approximately exponential decrease in cone density away from the fovea) by 365	

effectively simulating a fish-eye transformation on each image. These images were at highest 366	

resolution at the “fovea” (i.e. center of the image) with gradual decrease in resolution with 367	

increasing eccentricity. To examine the analog of “inter-subject variability”, we constructed 368	

multiple trained model instances (“subjects”), where the architecture and training images were 369	

held fixed (Inception-v3 and ImageNet, respectively) but the model filter weights initial 370	

condition and order of training images were randomly varied for each model instance. To 371	

examine the effect of model training, we fine-tuned an ImageNet-trained Inception-v3 model on 372	

a synthetic image set consisting of ~6.9 million images of 1049 objects (holding out 50,000 373	

images for model validation). These images were generated using the same rendering pipeline as 374	

our test images, but the objects were non-overlapping with the 24 test objects presented here. We 375	

tested the effect of different classifiers to generate model behavior by testing both multi-class 376	

logistic regression and support vector machine classifiers. Additionally, we tested the effect of 377	

varying the number of training images used to train those classifiers (20 versus 50 images per 378	

class). 379	

 380	

Behavioral metrics  381	

We measured the object recognition behavior of humans, macaques and DCNNIC models 382	

using many test images in 276 interleaved binary object discrimination tasks (see above) To 383	

analyze these behavioral data, we here introduce four behavioral (B) metrics of increasing 384	

richness, but requiring increasing amounts of data to measure reliably.  Each behavioral metric 385	

computes a pattern of unbiased behavioral performance, using a sensitivity index: 𝑑! =386	

𝑍 𝐻𝑖𝑡𝑅𝑎𝑡𝑒 − 𝑍(𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑅𝑎𝑡𝑒) , where Z is the inverse of the cumulative Gaussian 387	

distribution. The various metrics differ in the resolution at which hit rates and false alarm rates 388	

are computed. Table 1 summarizes four behavioral metrics, varying the hit-rate resolution 389	

(image-level or object-level) and the false-alarm resolution (one-versus-all or one-versus-other). 390	

Briefly, the one-versus-all object-level performance metric (termed B.O1) estimates the 391	

discriminability of each object from all other objects, pooling across all distractor object choices. 392	

Since we here tested 24 objects, the B.O1 metric measured here has 24 independent values.  The 393	

one-versus-other object-level performance metric (termed B.O2) estimates the discriminability of 394	
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each specific pair of objects, or the pattern of pairwise object confusions.  Since we here tested 395	

276 interleaved binary object discrimination tasks, the B.O2 metric measure here has 276 396	

independent values (the off-diagonal elements on one half of the 24x24 symmetric matrix). The 397	

one-versus-all image-level performance metric (termed B.I1) estimates the discriminability of 398	

each image from all other objects, pooling across all 23 possible distractor choices. Since we 399	

here focused on the primary image test set of 240 images (10 per object, see above), the B.I1 400	

metric measured here has 240 independent values.  Finally, the one-versus-other image-level 401	

performance metric (termed B.I2) estimates the discriminability of each image from each 402	

distractor object.  Since we here focused on the primary image test set of 240 images (10 per 403	

object, see above) with 23 distractors, the B.I1 metric measured here has 5520 independent 404	

values. 405	

 406	

Naturally, object-level and image-level behavioral patterns are tightly linked. For 407	

example, images of a particularly difficult-to-discriminate object would inherit lower 408	

performance values on average as compared to images from a less difficult-to-discriminate 409	

object.  To isolate the behavioral variance that is specifically driven by image variation and not 410	

simply predicted by the objects (and thus already captured by the B.O1 and B.O2 metrics), we 411	

estimated normalized image-level behavioral metrics by subtracting the mean performance 412	

values over all images of the same object and task. This process is schematically illustrated in 413	

Figure 3A. We focus on these normalized image-level behavioral metrics (termed B.I1n, B.I2n) 414	

for image-level comparisons between models and primates (see Results). 415	

 416	

Behavioral Consistency 417	

For each visual system, we randomly split all behavioral trials into two equal halves and 418	

computed each behavioral metric on each half. To estimate the reliability of each system’s 419	

behavioral pattern given the amount of data collected, we computed the Pearson correlation 420	

between behavioral patterns estimated from separate halves of the data (random split-halves of 421	

trials). To quantify the similarity between a model visual system and the human visual system, 422	

we use a measure called the noise-adjusted human “consistency” (referred to in the text as 423	

“human consistency”) as previously defined (Johnson, Hsiao et al. 2002).  Consistency (𝜌) is 424	

computed for each of the four behavioral metrics.  Specifically, for each metric, we computed the 425	
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Pearson correlation over all the independent measurements in the metric from the model (m) and 426	

the human (h), and we then normalize that raw Pearson correlation by the geometric mean of the 427	

split-half internal reliability of the same behavioral metric measured for each system: 𝜌(𝒎,𝒉) =428	
!(𝒎,𝒉)

!(𝒎,𝒎)!(𝒉,𝒉)
. 429	

 430	

Since all correlations in the numerator and denominator were computed using the same 431	

amount of trial data (exactly half of the trial data), we did not need to make use of any prediction 432	

formulas (e.g. extrapolation to larger number of trials using Spearman-Brown prediction 433	

formula). This procedure was repeated 10 times with different random split-halves of trials. Our 434	

rationale for using a noise-adjusted correlation measure for consistency was to account for 435	

variance in the behavioral patterns that arises from “noise,” i.e., variability that is not replicable 436	

by the experimental condition (image and task) and thus that no model can be expected to predict 437	

(Johnson, Hsiao et al. 2002). 438	

 439	

Characterization of Residuals 440	

In addition to measuring the similarity between the behavioral patterns of primates and 441	

models (using consistency analyses, as described above), we examined the corresponding 442	

differences, or “residual behavioral patterns.” Each candidate visual system model’s residual 443	

behavioral pattern was estimated as the residual of a linear least squares regression on the human 444	

pool data (one behavioral performance value per test image, thus 240 values) and we included a 445	

free intercept parameter. This procedure effectively captures the differences between human and 446	

model behavior after accounting for overall performance differences. Residual patterns were 447	

estimated on disjoint split-halves of trials, repeating 10 times with random trial permutations. We 448	

focused on the normalized one-versus-all image-level performance pattern (B.I1n) to reliably 449	

measure image-level differences between primates and models as that metric showed a clear 450	

difference between DCNNIC models and primates, and the behavioral residual can be interpreted 451	

based only the test images (i.e. we can assign a residual per image). 452	

 453	

To examine the extent to which the difference between each model and humans is 454	

reliably shared across different models, we measured the Pearson correlation between the 455	

residual patterns of pairs of models. Residual similarity was quantified as the proportion of 456	
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shared variance, defined as the square of the noise-adjusted correlation between residual patterns 457	

(the noise-adjustment was done as defined in equation above).  Correlations of residual patterns 458	

were always computed across distinct split-halves of data, to avoid introducing spurious 459	

correlations from subtracting common noise in the human data. We measured the residual 460	

consistency between all pairs of tested models, holding both architecture and optimization 461	

procedure fixed (between instances of the ImageNet-categorization trained Inception-v3 model, 462	

varying in filter initial conditions), varying the architecture while holding the optimization 463	

procedure fixed (between all tested ImageNet-categorization trained DCNN architectures), and 464	

holding the architecture fixed while varying the optimization procedure (between ImageNet-465	

categorization trained Inception-v3 and synthetic-categorization fine-tuned Inception-v3 466	

models). This analysis addresses not only the reliability of the failure of DCNNIC models to 467	

predict human behavior (deviations from humans), but also the relative importance of the 468	

characteristics defining similarities within the model sub-family (namely, the architecture and the 469	

optimization procedure). We first performed this analysis for behavioral patterns over the 240 470	

primary test images, and subsequently zoomed in on subsets of images that humans found to be 471	

particularly difficult. This image selection was made relative to the distribution of image-level 472	

performance of held-out human subjects (B.I1 metric from four subjects); difficult images were 473	

defined as ones with performance below the 50th and 25th percentiles of this distribution. 474	

 475	

To examine whether the difference between each model and humans can be explained by 476	

simple human-interpretable stimulus attributes, we regressed each DCNNIC model’s residual 477	

pattern from image attributes, including viewpoint attributes (e.g. object size, eccentricity, pose) 478	

and pixel attributes (e.g. mean luminance, background spatial frequency, segmentation-index). 479	

Briefly, we constructed a design matrix from the image attributes (using individual attributes, 480	

groups of attributes, or all attributes), and used multiple linear least squares regression to predict 481	

the image-level residual pattern. The multiple linear regression was tested using two-fold cross-482	

validation over trials. The relative importance of each attribute (or groups of attributes) was 483	

quantified using the proportion of explainable variance (i.e. variance remaining after accounting 484	

for noise variance) explained from the residual pattern. 485	

 486	

Primate zone 487	
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In this work, we are primarily concerned with the behavior of an “archetypal human”, 488	

rather than the behavior of any given individual human subject. We operationally defined this 489	

concept as the common behavior over many humans, obtained by pooling together trials from a 490	

large number of individual human subjects and treating this human pool as if it were acquired 491	

from a single behaving agent.  Due to inter-subject variability, we do not expect any given 492	

human or monkey subject to be perfectly consistent (i.e. have consistency of 1.0) with this 493	

archetypal human. Given current limitations of monkey psychophysics, we are not yet able to 494	

measure the behavior of very large number of monkey subjects at high resolution and 495	

consequently cannot directly estimate the consistency of the corresponding “archetypal monkey” 496	

to the human pool. Rather, we indirectly estimated this consistency by first measuring 497	

consistency as a function of number of individual subjects pooled together (n), and extrapolating 498	

the consistency estimate for pools of very large number of subjects (as n approaches infinity). 499	

Extrapolations were done using least squares fitting of an exponential function 𝜌 𝑛 = 𝑎 + 𝑏 ∙500	

𝑒!!" (see Figure 4). 501	

 502	

For each behavioral metric, we defined a “primate zone” as the range of consistency 503	

values delimited by consistency estimates 𝜌!! and 𝜌!! as lower and upper bounds respectively. 504	

 𝜌!! corresponds to the extrapolated estimate of consistency relative to the human pool of a 505	

large (i.e. infinitely many subjects) pool of rhesus macaque monkeys; 𝜌!! is by definition equal 506	

to 1.0. Thus, the primate zone defines a range of consistency values that correspond to models 507	

that accurately capture the behavior of the human pool, at least as well as an extrapolation of our 508	

monkey sample. In this work, we defined this range of behavioral consistency values as the 509	

criterion for success for computational models of primate visual object recognition behavior. 510	

 511	

To make a global statistical inference about whether models sampled from the DCNNIC 512	

sub-family meet or fall short of this criterion for success, we attempted to reject the hypothesis 513	

that, for a given behavioral metric, the human consistency of DCNNIC models is within the 514	

primate zone. To test this hypothesis, we estimate the empirical probability that the distribution 515	

of human consistency values, estimated over different model instances within this family, could 516	

produce human consistency values within the primate zone. Specifically, we estimated a p-value 517	

for each behavioral metric using the following procedure: We first estimated an empirical 518	
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distribution of Fisher-transformed human consistency values for this model family (i.e. over all 519	

tested DCNNIC models and over all trial-resampling of each DCNNIC model). From this 520	

empirical distribution, we fit a Gaussian kernel density function, optimizing the bandwidth 521	

parameter to minimize the mean squared error to the empirical distribution. This kernel density 522	

function was evaluated to compute a p-value, by computing the cumulative probability of 523	

observing a human consistency value greater than or equal to the criterion of success (i.e. the 524	

Fisher transformed 𝜌!! value). This p-value indicates the probability that human consistency 525	

values sampled from the observed distribution would fall into the primate zone, with smaller p-526	

values indicating stronger evidence against the hypothesis that the human consistency of DCNN 527	

models is within the primate zone. 528	

 529	

RESULTS 530	

 531	

In the present work, we systematically compared the basic level core object recognition 532	

behavior of primates and state-of-the-art artificial neural network models using a series of 533	

behavioral metrics (B) ranging from low to high resolution within a two-alternative forced 534	

choice match-to-sample paradigm. The behavior of each visual system, whether biological or 535	

computational, was tested on the same 2400 images (24 objects, 100 images/object) in the same 536	

276 interleaved binary object recognition tasks. Each system’s behavior was characterized at 537	

multiple resolutions (see Behavioral metrics in Methods) and directly compared to the 538	

corresponding behavioral metric of the archetypal human (defined as the average behavior over a 539	

large pool of human subjects tested; see Methods). The overarching logic of this study is that, if 540	

two visual systems are equivalent, they should produce statistically indistinguishable behavioral 541	

metrics (B). 542	

 543	

Object-level behavioral comparison 544	

 We first examined the pattern of one-versus-all object-level behavior (termed “B.O1 545	

metric”) computed across all images and possible distractors.  Since we tested 24 objects here, 546	

the B.O1 metric vector is 24 dimensional. Figure 2A shows the B.O1 metric vector for the 547	

pooled human (pooling n=1472 human subjects), pooled monkey (pooling n=5 monkey 548	

subjects), and several DCNNIC models as 24-dimensional vectors using a color scale. Each bin 549	
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corresponds to the system’s discriminability of one object against all others that were tested (i.e. 550	

all other 23 objects).  The color scales span each pattern’s full performance range, and warm 551	

colors indicate lower discriminability.  For example, red indicates that the tested visual system 552	

found the object corresponding to that element of the vector to be very challenging to 553	

discriminate from other objects (on average over all 23 discrimination tests, and on average over 554	

all images). Figure 2B directly compares the B.O1 metric vector computed from the behavioral 555	

output of two visual system models—a pixel model (top panel) and a DCNNIC model (Inception-556	

v3, bottom panel)—against that of the human BO1 metric vector. We observe a tighter 557	

correspondence to the human behavioral pattern for the DCNNIC model visual system than for 558	

the baseline pixel model visual systems. We quantified that similarity using a noise-adjusted 559	

correlation between each pair of B.O1 vectors (termed consistency, following (Johnson, Hsiao et 560	

al. 2002)); the noise adjustment means that a visual system that is identical to the human pool 561	

will have an expected human consistency score of 1.0, even if it has irreducible trial-by-trial 562	

stochasticity; see Methods). Figure 2C shows the B.O1 human consistency for each of the tested 563	

model visual systems. We additionally tested the behavior of a held-out pool of four human 564	

subjects (black dot) and a pool of five macaque monkey subjects (gray dot), and we observed 565	

that both yielded B.O1 vectors that were highly consistent to the human pool (𝜌 = 0.90, 0.97 for 566	

monkey pool and held-out human pool, respectively). We defined a range of consistency values, 567	

termed the “primate zone” (shaded gray area), delimited by extrapolated human consistency 568	

estimates of large pools of macaques and humans (see Methods, Figure 4). With respect to the 569	

B.O1 metric, all tested DCNNIC visual system models were either within or very close to this 570	

zone, while the baseline pixel visual system model and the low-level V1 visual system model 571	

were not (𝜌 = 0.40, 0.67 for pixels and V1 models, respectively). Based on the B.O1 behavioral 572	

metric alone, the hypothesis that the human consistency of DCNNIC models is within the primate 573	

zone could not be rejected (p = 0.54, exact test, see Methods). 574	

 575	

Next, we compared the behavior of the visual systems at a slightly higher level of 576	

resolution. Specifically, instead of pooling over all discrimination tasks for each object, we 577	

computed the mean discriminability of each of the 276 pairwise discrimination tasks (still 578	

pooling over images within each of those tasks). This yields a symmetric matrix that is referred 579	

to here as the B.O2 metric. Figure 2D shows the B.O2 metric for pooled human, pooled monkey, 580	
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and several DCNNIC visual system models as 24x24 symmetric matrices. Each bin (i,j) 581	

corresponds to the system’s discriminability of objects i and j, where warmer colors indicate 582	

lower performance; color scales are not shown but span each pattern’s full range.  We observed 583	

strong qualitative similarities between the pairwise object confusion patterns of all of the high 584	

level visual systems (e.g. camel and dog are often confused with each other by all three systems). 585	

This similarity is quantified in Figure 2E, which shows the consistency relative to the human 586	

pool of all examined visual system models with respect to this metric. Similar to the B.O1 587	

metric, we observed that both a pool of macaque monkeys and a held-out pool of humans are 588	

highly consistent to the human pool with respect to this metric (𝜌  = 0.77, 0.94 for monkeys, 589	

humans respectively). Also similar to the B.O1 metric, we found that all DCNNIC visual system 590	

models are highly consistent with the human pool (𝜌  > 0.8) while the baseline pixel visual 591	

system model and the low-level V1 visual system model were not (𝜌  = 0.41, 0.57 for pixels, V1 592	

models respectively). Indeed, all DCNNIC visual system models are within the defined “primate 593	

zone” of human consistency. Again, based on the B.O2 behavioral metric, the hypothesis that the 594	

human consistency of the DCNNIC models is within the primate zone could not be rejected (p = 595	

0.99, exact test). 596	

 597	

Taken together, humans, monkeys, and current DCNNIC models all share similar patterns 598	

of object-level behavioral performance patterns (B.O1 and B.O2 metrics) that are not shared with 599	

lower-level visual representations (pixels and V1). However, object-level performance patterns 600	

do not capture the fact that some images of an object are more challenging than other images of 601	

the same object because of interactions of the variation in the object’s pose and position with the 602	

object’s class. To overcome this limitation, we next examined the pattern of performances at the 603	

resolution of individual images on a subsampled set of images where we specifically obtained a 604	

large number of behavioral trials to accurately estimate image-level performance. Note that, from 605	

the point of view of the subjects, the behavioral tasks are identical to those already described. We 606	

are simply aiming to measure and compare their patterns of performance at much higher 607	

resolution.  608	

 609	

Image-level behavioral comparison 610	
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To isolate purely image-level behavioral variance, i.e. variance that is not predicted by 611	

the object and thus already captured by the B.O1 metric, we focused our analyses on normalized 612	

image-level performance patterns. This normalization procedure is schematically illustrated in 613	

Figure 3A for the one-versus-all image-level performance pattern (240-dimensional, 10 614	

images/object) to obtain the normalized one-versus-all image-level behavioral metric (termed 615	

B.I1n metric, see Methods). Figure 3B shows the B.I1n metric for the pooled human, pooled 616	

monkey, and several DCNNIC models as 240 dimensional vectors. Each bin’s color corresponds 617	

to the discriminability of a single image against all distractor options (after subtraction of object-618	

level discriminability, see Figure 3A), where warmer colors indicate lower values; color scales 619	

are not shown but span each pattern’s full range. Figure 3D shows the consistency to the human 620	

pool with respect to the B.I1n metric for all tested models. Unlike with object-level behavioral 621	

metrics, we now observe a divergence between DCNNIC models and primates. Both the monkey 622	

pool and the held-out human pool remain highly consistent with the pooled human with respect 623	

to this metric (𝜌  = 0.77, 0.96 for monkeys, humans respectively), but all DCNNIC models were 624	

significantly less consistent (Inception-v3: 𝜌  = 0.62) and well outside of the defined “primate 625	

zone” of I1_c consistency to the human pool. Indeed, based on the B.I1n behavioral metric, the 626	

hypothesis that the human consistency of DCNNIC models is within the primate zone is strongly 627	

rejected (p = 6.16e-8, exact test, see Methods). 628	

 629	

We can zoom in further on this metric by examining not only the overall performance for 630	

a given image but also the object confusions for each image, i.e. the additional behavioral 631	

variation that is due not only to the test image but to the interaction of that test image with the 632	

alternative (incorrect) object choice that is provided after the test image (see Fig. 1B).  This is the 633	

highest level of behavioral accuracy resolution that our task design allows. In raw form, it 634	

corresponds to one-versus-other image-level confusion matrix, where the size of that matrix is 635	

the total number of images by the total number of objects (here, 240x24). Each bin (i,j) 636	

corresponds to the behavioral discriminability of a single image i against distractor object j. 637	

Again, we isolate variance that is not predicted by object-level performance by subtracting the 638	

average performance on this binary task (mean over all images) to convert the raw matrix B.I2 639	

above into the normalized matrix, referred to as B.I2n. Figure 3D shows the B.I2n metric as 640	

240x24 matrices for the pooled human, pooled monkey and top DCNNIC visual system models. 641	
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Color scales are not shown but span each pattern’s full range; warmer colors correspond to 642	

images with lower performance in a given binary task, relative to all images of that object in the 643	

same task. Figure 3E shows the human consistency with respect to the B.I2n metric for all tested 644	

visual system models. Extending our observations using the vector of image difficulties (B.I1n), 645	

we observe a similar divergence between primates and DCNNIC visual system models on the 646	

matrix pattern of image-by-distractor difficulties (I2n). Specifically, both the monkey pool and 647	

held-out human pool remain highly consistent with the pooled human (𝜌  = 0.75, 0.77 for 648	

monkeys, humans respectively), while all tested DCNNIC models are significantly less consistent 649	

(Inception-v3: 𝜌  = 0.53) falling well outside of the defined “primate zone” of I2n consistency to 650	

the human pool. Once again, based on the B.I2n behavioral metric, the hypothesis that the human 651	

consistency of DCNNIC models is within the primate zone is strongly rejected (p = 3.17e-18, 652	

exact test, see Methods). 653	

 654	

Natural subject-to-subject variation 655	

For each behavioral metric (B.O1, BO2, B.I1n, BI2n), we defined a “primate zone” as the 656	

range of consistency values delimited by consistency estimates 𝜌!!and 𝜌!! as lower and upper 657	

bounds respectively. 𝜌!!  corresponds to the extrapolated estimate of the human (pool) 658	

consistency of a large (i.e. infinitely many subjects) pool of rhesus macaque monkeys. Thus, the 659	

fact that a particular tested visual system model falls outside of the primate zone can be 660	

interpreted as a failure of that visual system model to accurately predict the behavior of the 661	

archetypal human at least as well as the archetypal monkey. 662	

 663	

However, from the above analyses, it is not yet clear whether a visual system model that 664	

fails to predict the archetypal human might nonetheless accurately correspond to one or more 665	

individual human subjects found within the natural variation of the human population.  Given the 666	

difficulty of measuring individual subject behavior at the resolution of single images for large 667	

numbers of human and monkey subjects, we could not yet directly test this hypothesis. Instead, 668	

we examined it indirectly by asking whether an archetypal model—that is a pool that includes an 669	

increasing number of model “subjects”—would approach the human pool. We simulated model 670	

inter-subject variability by retraining a fixed DCNN architecture with a fixed training image set 671	

with random variation in the initial conditions and order of training images. This procedure 672	
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results in models that can still perform the task but with slightly different learned weight values. 673	

We note that this procedure is only one possible choice of generating inter-subject variability 674	

within each visual system model type, a choice that is an important open research direction that 675	

we do not address here. From this procedure, we constructed multiple trained model instances 676	

(“subjects”) for a fixed DCNN architecture, and asked whether an increasingly large pool of 677	

model “subjects” better captures the behavior of the human pool, at least as well as a monkey 678	

pool. This post-hoc analysis was conducted for the most human consistent DCNN architecture 679	

(Inception-v3). 680	

 681	

Figure 4A shows the measured human consistency for each of the four behavioral 682	

metrics, for subject pools of varying size (number of subjects n) of rhesus macaque monkeys 683	

(black) and ImageNet-trained Inception-v3 models (blue). The human consistency increases with 684	

growing number of subjects for both visual systems across all behavioral metrics. To estimate 685	

the expected human consistency for a pool of infinitely many monkey or model subjects, we fit 686	

an exponential function mapping n to the mean consistency values and obtained a parameter 687	

estimate for the asymptotic value (see Methods). We note that estimated asymptotic values are 688	

not significantly beyond the range of the measured data—the human consistency of a pool of 689	

five monkey subjects reaches within 97% of the human consistency of an estimated infinite pool 690	

of monkeys for all metrics—giving credence to the extrapolated consistency values. This 691	

analysis suggests that under this model of inter-subject variability, a pool of Inception-v3 692	

subjects accurately capture archetypal human behavior at the resolution of objects (B.O1, B.O2) 693	

by our primate zone criterion (see Figure 4A, first two panels). In contrast, even a large pool of 694	

Inception-v3 subjects still fails at its final asymptote to accurately capture human behavior at the 695	

image-level (B.I1n, B.I2n) (Figure 4A, last two panels). 696	

 697	

Modification of visual system models to try to rescue their human consistency 698	

Next, we wondered if some relatively simple changes to the DCNNIC visual system 699	

models tested here could bring them into better correspondence with the primate visual system 700	

behavior (with respect to B.I1n and B.I2n metrics). Specifically, we considered and tested the 701	

following modifications to the DCNNIC model visual system that scored the highest in our 702	

benchmarks (Inception-v3): we (1) changed the input to the model to be more primate-like in its 703	
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retinal sampling (Inception-v3 + retina-like), (2) changed the transformation (aka “decoder”) 704	

from the internal model feature representation into the behavioral output by augmenting the 705	

number of decoder training images or changing the decoder type (Inception-v3 + SVM, 706	

Inception-v3 + classifier_train), and (3) modified all of the internal filter weights of the model 707	

(aka “fine tuning”) by augmenting its ImageNet training with additional images drawn from the 708	

same distribution as our test images (Inception-v3 + synthetic-fine-tune). While some of these 709	

modifications (e.g. fine-tuning on synthetic images and increasing the number of classifier 710	

training images) had the expected effect of increasing mean overall performance (not shown), we 711	

found that none of these modifications led to a significant improvement in its human consistency 712	

on the behavioral metrics (Figure 4B). Thus, the failure of current DCNNIC models to accurately 713	

capture the image-level behavioral patterns of primates cannot be rescued by simple 714	

modifications on a fixed architecture.  715	

 716	

Looking for clues: Image-level comparisons of models and primates 717	

Taken together, Figures 2, 3 and 4 suggest that current DCNNIC visual system models fail 718	

to accurately capture the image-level behavioral patterns of humans and monkeys. To further 719	

examine this failure in the hopes of providing clues for model improvement, we examined the 720	

residual image-level behavioral patterns of all the visual system models, relative to the pooled 721	

human. For each model, we computed its residual image-level behavioral pattern as the 722	

difference (positive or negative) of a linear least squares regression of the model predictions with 723	

the human pool observations. For this analysis, we focused on the B.I1n metric as it showed a 724	

clear divergence of DCNNIC models and primates, and the behavioral residual can be interpreted 725	

based only on the test images (whereas B.I2n depends on the interaction between test images and 726	

distractor choice). We first asked to what extent the residual image-level behavioral patterns are 727	

shared between different visual system models. 728	

 729	

Figure 5A shows the similarity between the residual image-level patterns of all pairs of 730	

models; the color of bin (i,j) indicates the proportion of explainable variance that is shared 731	

between the residual image-level patterns of visual systems i and j. For ease of interpretation, we 732	

ordered visual system models based on their architecture and optimization procedure and 733	

partitioned this matrix into four distinct regions. Each region compares the residuals of a 734	

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/240614doi: bioRxiv preprint first posted online Jan. 1, 2018; 

http://dx.doi.org/10.1101/240614
http://creativecommons.org/licenses/by-nc-nd/4.0/


“source” model group with fixed architecture and optimization procedure (five Inception-v3 735	

models optimized for categorization on ImageNet, varying only in initial conditions and training 736	

image order) to a “target” model group. The target groups of models for each of the four regions 737	

are: 1) the pooled monkey, 2) other DCNNIC models from the source group, 3) DCNNIC models 738	

that differ in architecture but share the optimization procedure of the source group models and 4) 739	

DCNNIC models that differ slightly using an augmented optimization procedure but share the 740	

architecture of the source group models. Figure 5B shows the mean (±SD) variance shared in the 741	

residuals averaged within these four regions for all images (black dots), as well as for images 742	

that humans found to be particularly difficult (blue and red dots, selected based on held-out 743	

human data, see Methods). First, consistent with the results shown in Figure 3, we note that the 744	

residual image-level patterns of this particular DCNNIC model are not well shared with the 745	

pooled monkey (r2=0.39 in region 1), and this phenomenon is more pronounced for the images 746	

that humans found most difficult (r2=0.17 in region 1). However, this relatively low correlation 747	

between model and primate residuals is not indicative of spurious model residuals, as the image-748	

level residual patterns were highly reliable between different instances of this fixed DCNNIC 749	

model, across random training initializations (region 2: r2=0.79, 0.77 for all and most difficult 750	

images, respectively). Interestingly, residual patterns were still largely shared with other DCNNIC 751	

models with vastly different architectures (region 3: r2=0.70, 0.65 for all and most difficult 752	

images, respectively).  However, residual patterns were more strongly altered when the visual 753	

training diet of the same architecture was altered (region 4: r2=0.57, 0.46 for all and most 754	

difficult images respectively, cf. region 3). Taken together, these results indicate that the images 755	

where DCNNIC visual system models diverged from humans (and monkeys) were not spurious 756	

but were rather highly reliable across different model architectures, demonstrating that current 757	

DCNNIC models systematically and similarly diverge from primates. 758	

 759	

To look for clues for model improvement, we asked what, if any, characteristics of 760	

images might account for this divergence of models and primates. We regressed the residual 761	

image-level behavioral pattern of the Inception-v3 architecture on a range of image attributes. 762	

Specifically, we considered both object viewpoint attributes (the size, eccentricity, and pose of 763	

the object) and pixel attributes (mean luminance, background spatial frequency, segmentation 764	

index) of each image. We used multivariate regressions to predict the residual pattern from 765	
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groups of several image attributes (e.g. from all attributes), and also considered each attribute 766	

individually using univariate regressions. Figure 6A shows example images (sampled from the 767	

full set of 2400 images) with increasing attribute value for each of these six image attributes. 768	

While the DCNNIC models were not directly optimized to display primate-like performance 769	

dependence on such attributes, we observed that the Inception-v3 visual system model 770	

nonetheless exhibited qualitatively similar performance dependencies as primates (see Figure 771	

6B). For example, humans (black), monkeys (gray) and the Inception-v3 model (blue) all 772	

performed better, on average, for images in which the object is in the center of gaze (low 773	

eccentricity) and large in size. The similarity of the patterns in Figure 6B between primates and 774	

the DCNNIC visual system models is not perfect but is striking, particularly in light of the fact 775	

that these models were not optimized to produce these patterns. However, this similarity is 776	

analogous to the similarity in the B.O1 and B.O2 metrics in that it only holds on average over 777	

many images. Looking more closely at the image-by-image comparison, we again found that the 778	

DCNNIC models failed to capture a large portion of the image-by-image variation (Figure 3). In 779	

particular, Figure 6C shows the proportion of variance explained by specific image attributes for 780	

the residual, patterns of monkeys (dark gray), Inception-v3 models (dark blue), and all DCNNIC 781	

models (light blue). We found that, taken together, all six of these image attributes explained 782	

only ~10% of the variance in the image-wise residual between humans and DCNNIC. 783	

Furthermore, we found that pixel attributes, rather than viewpoint attributes, contributed the 784	

majority of this explanatory power. Each individual attribute could explain at most a small 785	

amount of residual behavioral variance (<5% of the explainable variance). In sum, these analyses 786	

show that some behavioral effects that might provide intuitive clues to modify the DCNNIC 787	

models are already in place in those models (e.g. a dependence on eccentricity). But the 788	

quantitative image-by-image analyses of the remaining unexplained variance (Figure 6C) argue 789	

that the DCNNIC visual system models’ failure to capture primate image-level performance 790	

patterns cannot be further accounted for by these simple image attributes and likely stem from 791	

other factors. 792	

 793	

DISCUSSION 794	

 795	
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Broadly, our scientific goal is to discover computational models that quantitatively 796	

explain the neuronal mechanisms underlying primate invariant object recognition behavior. To 797	

this end, previous work had shown that specific artificial neural network models, drawn from a 798	

large family of deep convolutional neural networks and optimized to achieve high levels of 799	

object categorization performance on large-scale image-sets, accurately capture the coarse 800	

behavioral patterns of primates in core object recognition tasks while the internal hidden neurons 801	

of those same models also predict a large fraction of primate ventral stream neural response 802	

variance to images (Cadieu, Hong et al. 2014, Khaligh-Razavi and Kriegeskorte 2014, Yamins, 803	

Hong et al. 2014, Güçlü and van Gerven 2015, Rajalingham, Schmidt et al. 2015, Kheradpisheh, 804	

Ghodrati et al. 2016, Kubilius, Bracci et al. 2016). For clarity, we here referred to this sub-family 805	

of models as DCNNIC (to denote ImageNet-Categorization training), so as to distinguish them 806	

from all possible models in the DCNN family, and more broadly, from the super-family of all 807	

ANNs. In this work, we directly compared leading DCNNIC models to primates (humans and 808	

monkeys) with respect to their behavioral patterns at both object and image level resolution in 809	

the domain of core object recognition. Our primary novel result is that leading DCNNIC models 810	

fail to fully replicate the image-level behavioral patterns of primates. An important related claim 811	

is that rhesus monkeys are more consistent with the archetypal human than any of the tested 812	

DCNNIC models. 813	

 814	

While it had previously been shown that DCNNIC models can diverge from human 815	

behavior on specifically chosen adversarial images (Szegedy, Zaremba et al. 2013), a strength of 816	

our work is that we did not optimize images to induce failure but instead randomly sampled the 817	

image generative parameter space broadly. Furthermore, we showed that the failure of current 818	

DCNNIC models to accurately predict primate behavioral patterns cannot be explained by simple 819	

image attributes (e.g. object viewpoint meta-parameters and low-level image statistics) and 820	

cannot be rescued by simple model modifications (input image sampling, model training, and 821	

classifier variations). Taken together, these results expose a general failure of current DCNNIC to 822	

fully replicate the image-level behavioral patterns of primates and suggest that new ANN models 823	

are needed to more precisely capture the neural mechanisms underlying primate object vision. 824	

 825	
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With regards to new ANN models, we can attempt to make prospective inferences about 826	

new and untested models from the data presented here. Based on the observed distribution of 827	

image-level behavioral consistency values for the tested DCNNIC models, one could infer that yet 828	

untested model instances sampled identically (i.e. from the same model sub-family) are highly 829	

likely to have similarly inadequate image-level behavioral consistency with primates. While we 830	

cannot rule out the possibility that at least one model instance within the DCNNIC class fully 831	

matches image-level human patterns, the probability of sampling such a model is vanishingly 832	

small (p<10-18 for B.I2n consistency, estimated using exact test using Gaussian kernel density 833	

estimation, see Methods, Results). An important caveat of this inference is that we may have 834	

poorly estimated the consistency distribution, as we did not exhaustively sample this model 835	

family. In particular, if the model sampling process is non-stationary over time (e.g. increases in 836	

computational power over time allows larger models to be successfully trained), the consistency 837	

of new (yet to be sampled) models may lie outside the currently estimated distribution. 838	

Consistent with the latter, we observed that current DCNNIC cluster into two distinct 839	

“generations” separated in time (before/after the year 2015; e.g. Inception-v3 improves over 840	

Alexnet though both lie outside the primate zone in Figure 3). Thus, following this trend, it is 841	

possible that the evolution of “next-generation” models within the DCNNIC sub-family could 842	

meet the criterion for success of primate-like behavior.  843	

 844	

Alternatively, it is possible that new DCNNIC models would also fail to capture primate-845	

like image-level behavior, suggesting that either the architectural limitations (e.g. convolutional, 846	

feed-forward) and/or the optimization procedure (including the diet of visual images) that define 847	

this model sub-family are fundamentally limiting. Thus, ANN model sub-families utilizing 848	

different architectures (e.g. recurrent neural networks) and/or optimized for different behavioral 849	

goals (e.g. loss functions other than object classification performance, and/or images other than 850	

category-labeled ImageNet images) may be necessary to accurately capture primate behavior. To 851	

this end, we propose that testing individual changes to the DCNNIC models—each creating a new 852	

ANN model sub-family—may be the best way forward, as DCNNIC models currently best 853	

explain both the behavioral and neural phenomena of core object recognition. 854	

 855	
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To reach that goal of finding a new ANN model sub-family that is an even better 856	

mechanistic model of the primate ventral visual stream, we propose that even larger-scale, high-857	

resolution behavioral measurements than previously used, such as expanded versions of the 858	

patterns of image-level performance presented here, could serve as a useful top-down 859	

optimization constraint. Not only do these high-resolution behavioral metrics have the statistical 860	

power to reject the currently leading ANN models, but they can also be efficiently collected at 861	

very large scale, in contrast to other constraint data (e.g. large-scale neuronal measurements). 862	

Indeed, current technological tools for high-throughput psychophysics in humans and monkeys 863	

(e.g. Amazon Mechanical Turk for humans, Monkey Turk for rhesus monkeys) enable time- and 864	

cost-efficient collection of large-scale behavioral datasets, such as the ~1 million behavioral 865	

trials obtained for the current work. These systems trade off an increase in efficiency with a 866	

decrease in experimental control. For example, we did not impose experimental constraints on 867	

subjects’ acuity and we can only infer likely head and gaze position. Previous work has shown 868	

that patterns of behavioral performance on object recognition tasks from in-lab and online 869	

subjects were equally reliable and virtually identical (Majaj, Hong et al. 2015), but it is not yet 870	

clear to what extent this holds at the resolution of individual images, as one might expect that 871	

variance in performance across images is more sensitive to precise head and gaze location. For 872	

this reason, we refrain from making strong inferences from small behavioral differences, such as 873	

the difference between humans and monkeys. Nevertheless, we argue that this sacrifice in exact 874	

experimental control while retaining sufficient power for model comparison is a good tradeoff 875	

for the large-scale, high-resolution behavioral datasets that could be efficiently collected in both 876	

humans and monkeys, specifically toward the goal of constraining future models of the primate 877	

ventral visual stream.  878	

  879	
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TABLES 972	
Table	1	 	973	

Behavioral Metric Hit Rate False Alarm Rate 

One-versus all object-level performance  

(B.O1) (24 x 1) 

𝑂! 𝑖 = 𝑍 𝐻𝑅 𝑖 − 𝑍 𝐹𝐴𝑅 𝑖 , 

𝑖 = 1,2,… , 24 

Proportion of trials when 

images of object i were 

correctly labeled as 

object i. 

 

Proportion of trials 

when any image was 

incorrectly labeled as 

object i. 

One-versus-other object-level performance 

B.O2 (24 x 24) 

𝑂! 𝑖, 𝑗 = 𝑍 𝐻𝑅 𝑖, 𝑗 − 𝑍 𝐹𝐴𝑅 𝑖, 𝑗 , 

𝑖 = 1,2,… , 24 

𝑗 = 1,2,… , 24 

Proportion of trials when 

images of object i were 

correctly labeled as i, 

when presented against 

distractor object j. 

Proportion of trials 

when images of object j 

were incorrectly 

labeled as object i 

One-versus-all image-level performance 

B.I1 (240 x 1) 

𝐼! 𝑖𝑖 = 𝑍 𝐻𝑅 𝑖𝑖 − 𝑍 𝐹𝐴𝑅 𝑖𝑖 , 

𝑖𝑖 = 1,2,… , 240 

𝑗 = 1,2,… , 24 

Proportion of trials when 

image ii was correctly 

classified as object i. 

Proportion of trials 

when any image was 

incorrectly labeled as 

object i. 

One-versus-other image-level performance 

B.I2 (240 x 24) 

𝐼! 𝑖𝑖, 𝑗 = 𝑍 𝐻𝑅 𝑖𝑖, 𝑗 − 𝑍 𝐹𝐴𝑅 𝑖𝑖, 𝑗 , 

𝑖𝑖 = 1,2,… , 240 

𝑗 = 1,2,… , 24 

Proportion of trials when 

image ii was correctly 

classified as object i, 

when presented against 

distractor object j. 

Proportion of trials 

when images of object j 

were incorrectly 

labeled as object i 

 974	

Table 1: Definition of behavioral performance metrics. The first column provides the name, 975	

abbreviation, dimensions, and equations for each of the raw performance metrics. The next two 976	

columns provide the definitions for computing the hit rate (HR) and false alarm rate (FAR) 977	

respectively. 978	

  979	
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FIGURE LEGENDS 980	

 981	

Figure 1. Images and behavioral task. (A) Two (out of 100) example images for each of the 24 982	

basic-level objects. To enforce true invariant object recognition behavior, we generated 983	

naturalistic synthetic images, each with one foreground object, by rendering a 3D model of each 984	

object with randomly chosen viewing parameters and placing that foreground object view onto a 985	

randomly chosen, natural image background. (B) Time course of example behavioral trial (zebra 986	

versus dog) for human psychophysics. Each trial initiated with a central fixation point for 500 987	

ms, followed by 100 ms presentation of a square test image (spanning 6-8° of visual angle). 988	

After extinction of the test image, two choice images were shown to the left and right. Human 989	

participants were allowed to freely view the response images for up to 1000 ms and responded 990	

by clicking on one of the choice images; no feedback was given.  To neutralize top-down feature 991	

attention, all 276 binary object discrimination tasks were randomly interleaved on a trial-by-trial 992	

basis. The monkey task paradigm was nearly identical to the human paradigm, with the 993	

exception that trials were initiated by touching a fixation circle horizontally centered on the 994	

bottom third of the screen, and successful trials were rewarded with juice while incorrect choices 995	

resulted in timeouts of 1–2.5s. (C) Large-scale and high-throughput psychophysics in humans 996	

(top left), monkeys (top right), and models (bottom). Human behavior was measured using the 997	

online Amazon MTurk platform, which enabled the rapid collection ~1 million behavioral trials 998	

from 1472 human subjects. Monkey behavior was measured using a novel custom home-cage 999	

behavioral system (MonkeyTurk), which leveraged a web-based behavioral task running on a 1000	

tablet to test many monkey subjects simultaneously in their home environment. Deep 1001	

convolutional neural network models were tested on the same images and tasks as those 1002	

presented to humans and monkeys by extracting features from the penultimate layer of each 1003	

visual system model and training back-end multi-class logistic regression classifiers. All 1004	

behavioral predictions of each visual system model were for images that were not seen in any 1005	

phase of model training.  1006	

Figure 2. Object-level comparison to human behavior. (A) One-versus-all object-level 1007	

performance (B.O1) metric for the pooled human (n=1472 human subjects), pooled monkey 1008	

(n=5 monkey subjects), and several DCNNIC models. Each B.O1 pattern is shown as a 24-1009	

dimensional vector using a color scale; each colored bin corresponds to the system’s 1010	
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discriminability of one object against all others that were tested. The color scales span each 1011	

pattern’s full performance range, and warm colors indicate lower discriminability. (B) Direct 1012	

comparison of the B.O1 metric vector computed from the behavioral output of a pixel visual 1013	

system model (top panel) and a DCNNIC visual system model (Inception-v3, bottom panel) 1014	

against that of the human B.O1 metric vector. (C) Consistency to the human pool, with respect to 1015	

the B.O1 metric, for each of the tested model visual systems. The black and gray dots correspond 1016	

to a held-out pool of four human subjects and a pool of five macaque monkey subjects 1017	

respectively. The shaded area corresponds to the “primate zone,” a range of consistencies 1018	

delimited by the estimated consistency of a pool of infinitely many monkeys (see Figure 4A). 1019	

(D) One-versus-other object-level performance (B.O2) metric for pooled human, pooled 1020	

monkey, and several DCNNIC models. Each B.O2 pattern is shown as a 24x24 symmetric 1021	

matrices using a color scale, where each bin (i,j) corresponds to the system’s discriminability of 1022	

objects i and j. Color scales similar to (A). (E) Consistency to the human pool, with respect to 1023	

the B.O2 metric, for each of the tested model visual systems. Format is identical to (C).  1024	

Figure 3. Image-level comparison to human behavior. (A) Schematic for computing B.I1n 1025	

metric. First, the one-versus-all image-level metric (B.I1) is shown as a 240-dimensional vector 1026	

(24 objects, 10 images/object) using a color scale, where each colored bin corresponds to the 1027	

system’s discriminability of one image against all distractor objects. From this pattern, the 1028	

normalized one-versus-all image-level metric (B.I1n) is estimated by subtracting the mean 1029	

performance value over all images of the same object. This normalization procedure isolates 1030	

behavioral variance that is specifically image-driven but not simply predicted by the object. (B) 1031	

Normalized one-versus-all object-level performance (B.I1n) metric for the pooled human, pooled 1032	

monkey, and several DCNNIC models. Each B.I1n pattern is shown as a 240-dimensional vector 1033	

using a color scale, formatted as in (A). Color scales similar to Figure 2A. (C) Consistency to the 1034	

human pool, with respect to the B.I1n metric, for each of the tested model visual systems. Format 1035	

is identical to Figure 2C. (D) Normalized one-versus-other image-level performance (B.I2n) 1036	

metric for pooled human, pooled monkey, and several DCNNIC models. Each B.I2n pattern is 1037	

shown as a 240x24 matrix using a color scale, where each bin (i,j) corresponds to the system’s 1038	

discriminability of image i against distractor object j. Color scales similar to Figure 2A. (E) 1039	

Consistency to the human pool, with respect to the B.I2n metric, for each of the tested model 1040	

visual systems. Format is identical to Figure 2C.  1041	
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Figure 4. Effect of subject pool size and DCNN model modifications on consistency with 1042	

human behavior. (A) Accounting for natural subject-to-subject variability. For each of the four 1043	

behavioral metrics, the human consistency distributions of monkey (blue markers) and model 1044	

(black markers) pools are shown as a function of the number of subjects in the pool. The human 1045	

consistency increases with growing number of subjects for all visual systems across all 1046	

behavioral metrics. The dashed lines correspond to fitted exponential functions, and the 1047	

parameter estimate (mean ± SE) of the asymptotic value, corresponding to the estimated human 1048	

consistency of a pool of infinitely many subjects, is shown at the right most point on each 1049	

abscissa. (B) Model modifications that aim to rescue the DCNNIC models. We tested several 1050	

simple modifications (see Methods) to the DCNNIC visual system model that scored the highest 1051	

in our benchmarks (Inception-v3). Each panel shows the resulting human consistency per 1052	

modified model (mean ± SD over different model instances, varying in random filter 1053	

initializations) for each of the four behavioral metrics. 1054	

 1055	

Figure 5. Analysis of unexplained human behavioral variance. (A) Residual similarity 1056	

between all pairs of human visual system models. The color of bin (i,j) indicates the proportion 1057	

of explainable variance that is shared between the residual image-level behavioral patterns of 1058	

visual systems i and j. For ease of interpretation, we ordered visual system models based on their 1059	

architecture and optimization procedure and partitioned this matrix into four distinct regions. (B) 1060	

Summary of residual similarity. For each of the four regions in Figure 5A, the similarity to the 1061	

residuals of Inception-v3 (region 2 in (A)) is shown (mean ± SD, within each region) for all 1062	

images (black dots), and for images that humans found to be particularly difficult (blue and red 1063	

dots, selected based on held-out human data).  1064	

 1065	

Figure 6. Dependence of primate and DCNN model behavior on object viewpoint and pixel 1066	

attributes. (A) Example images with increasing attribute value, for each of the six pre-defined 1067	

image attributes. (B) Dependence of performance as a function of six image attributes, for 1068	

humans, monkeys and a DCNNIC model (Inception-v3). (C) Proportion of explainable variance 1069	

of the residual image-level behavioral pattern of monkeys (black), an Inception-v3 model (dark 1070	

blue), and all DCNNIC models (light blue) that is accounted for by each of the pre-defined image 1071	
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attributes. Error-bars correspond to SD over trial re-sampling for monkeys, over different model 1072	

“subjects” for Inception-v3, and over different DCNNIC models for “Models (all)”. 1073	

 1074	
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