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ABSTRACT 22	

Ventral visual stream neural responses are dynamic, even for static image presentations. However, 23	

dynamical neural models of visual cortex are lacking as most progress has been made modeling static, 24	

time-averaged responses. Here, we studied population neural dynamics during face detection across 25	

three cortical processing stages. Remarkably, ~30 milliseconds after the initially evoked response, we 26	

found that neurons in intermediate level areas decreased their preference for faces, becoming anti-face 27	

preferring on average even while neurons in higher level areas achieved and maintained a face 28	

preference. This pattern of hierarchical neural dynamics was inconsistent with extensions of standard 29	

feedforward circuits that implemented recurrence within a cortical stage. Rather, recurrent models 30	

computing errors between stages captured the observed temporal signatures. Without additional 31	

parameter fitting, this model of neural dynamics, which simply augments the standard feedforward 32	

model of online vision to encode errors, also explained seemingly disparate dynamical phenomena in 33	

the ventral stream. 34	

 35	
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INTRODUCTION 36	

The primate ventral visual stream is a hierarchically organized set of cortical areas beginning with the 37	

primary visual cortex (V1) and culminating with distributed patterns of neural firing across the inferior 38	

temporal cortex (IT) that explicitly encode objects (i.e. linearly decodable object identity) (Hung, 39	

Kreiman, Poggio, & DiCarlo, 2005) and quantitatively account for core invariant object discrimination 40	

behavior in primates (Majaj, Hong, Solomon, & DiCarlo, 2015). Formalizing object recognition as the 41	

result of a series of feedforward computations yields models that achieve impressive performance in 42	

object categorization (Krizhevsky, Sutskever, & Hinton, 2012)(Zeiler & Fergus, 2013) similar to the 43	

absolute level of performance achieved by IT neural populations, and these models are the current best 44	

predictors of neural responses in IT cortex and its primary input layer, V4 (Cadieu et al., 2014)(Yamins 45	

et al., 2014). Thus, the feedforward inference perspective provides a simple but powerful, first-order 46	

framework for the ventral stream and core invariant object recognition. 47	

 48	

 However, visual object recognition behavior may not be executed via a single feedforward neural 49	

processing pass (a.k.a. feedforward inference) because IT neural responses are well-known to be 50	

dynamic even in response to images without dynamic content (Brincat & Connor, 2006)(Sugase, 51	

Yamane, Ueno, & Kawano, 1999)(Chen et al., 2014)(Meyer, Walker, Cho, & Olson, 2014), raising the 52	

question of what computations those neural activity dynamics might reflect. Prior work has proposed 53	

that such neuronal response dynamics could be the result of different types of circuits executing 54	

different types of computation such as: 1) recurrent circuits within each ventral stream processing stage 55	

implementing local normalization of the feedforward information as it passes through the stage 56	

(Carandini, Heeger, & Movshon, 1997)(Schwartz & Simoncelli, 2001)(Carandini & Heeger, 2012), 2) 57	

feedback circuits between each pair of ventral stream stages implementing the integration of top-down 58	

with bottom-up information to improve the current (online) inference (Seung, 1997)(Lee, Yang, Romero, 59	

& Mumford, 2002)(Zhang & Heydt, 2010)(Epshtein, Lifshitz, & Ullman, 2008), or 3) feedback circuits 60	
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between each pair of stages comparing top-down and bottom-up information to compute prediction 61	

errors that guide changes in synaptic weights so that neurons are better tuned to features useful for 62	

future feedforward behavior (learning) (Rao & Ballard, 1999). Thus, neural dynamics may reflect the 63	

various adaptive computations (within-stage normalization, top-down Bayesian inference) or reflect the 64	

underlying error intermediates that could be generated during those processes (e.g. predictive coding). 65	

 66	

 These computationally motivated ideas can each be implemented as neural circuits to ask which 67	

idea best predicts response dynamics across the visual hierarchy. Here, our main goal was to look 68	

beyond the initial, feedforward response edge to see if we could disambiguate among dynamics that 69	

might result from stacked feedforward, lateral, and feedback operations. Rather than record from a 70	

single processing level, we measured the dynamics of neural signals across three hierarchical levels 71	

(pIT, cIT, aIT) within macaque IT. We focused on face processing subregions within each of these 72	

levels for three reasons. First, prior evidence argues that these three subregions are tightly 73	

anatomically and functionally connected and that the subregion in pIT is the dominant input to the 74	

higher subregions (Grimaldi, Saleem, & Tsao, 2016)(Moeller, Freiwald, & Tsao, 2008). Second, 75	

because prior work argues that a key behavioral function of these three subregions is to distinguish 76	

faces from non-faces, this allowed us to focus our testing on a relatively small number of images 77	

targeted to engage that processing function. Third, prior knowledge of pIT neural tuning properties (Issa 78	

& DiCarlo, 2012) allowed us to design images that were quantitatively matched in their ability to drive 79	

neurons in the pIT input subregion but that should ultimately be processed into two separate groups 80	

(face vs. non-face). We reasoned that these images would force important computations for 81	

disambiguation to occur somewhere between the pIT subregion and the higher level (cIT, aIT) 82	

subregions. With this setup, our aim was to observe the dynamics at all three levels of the hierarchy in 83	

response to that image processing challenge so that we might discover – or at least constrain -- which 84	

type of computation is at work. 85	
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 86	

 Consistent with the idea that the overall system performs face vs. non-face discrimination (i.e. 87	

face detection), we found that in the highest face processing stage (aIT), neurons rapidly developed 88	

and maintained a response preference for faces over non-faces even though our images were 89	

designed to be challenging for frontal face detection. However, we found that many neurons in the early 90	

(pIT) and intermediate (cIT) processing levels of IT had face selectivity that rapidly but paradoxically 91	

decreased. That is, the responses of these neurons evolved to prefer images of non-faces over images 92	

of faces within 30 milliseconds of their feedforward response. We found that standard feedforward 93	

models that employ local recurrences such as adaptation, lateral inhibition, and normalization could not 94	

capture this stage-wise pattern of image selectivity despite our best attempts. However, we found that 95	

decreasing -- rather than increasing -- face preference in early and intermediate processing stages is a 96	

natural dynamical signature of previously suggested “error coding” models (Rao & Ballard, 1999) in 97	

which the neural spiking activity at each processing stage carries both an explicit representation of the 98	

variables of interest (e.g. is a face present?) and an explicit encoding of errors computed between each 99	

pair of stages in the hierarchy (e.g. a face was predicted, but a non-face was present leading to an 100	

error). 101	

 102	

RESULTS 103	

We leveraged the hierarchically arranged face processing system in macaque ventral visual cortex to 104	

study the dynamics of neural processing across a hierarchy (Tsao, Freiwald, Tootell, & Livingstone, 105	

2006)(Tsao, Moeller, & Freiwald, 2008) (Figure 1A). The serially arranged posterior, central, and 106	

anterior face-selective subregions of IT (pIT, cIT, and aIT) can be conceptualized as building increasing 107	

selectivity for faces culminating in aIT representations (Freiwald & Tsao, 2010)(Chang & Tsao, 2017). 108	

Using serial, single electrode recording, we sampled neural sites across the posterior to anterior extent 109	

of the IT hierarchy in the left hemispheres of two monkeys to generate neurophysiological maps 110	
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(Figure 1A; example neurophysiological map in one monkey using a faces versus non-face objects 111	

screen set) (Issa, Papanastassiou, & DiCarlo, 2013). We localized the recording locations in vivo and 112	

co-registered across all penetrations using a stereo microfocal x-ray system (~400 micron in vivo 113	

resolution) (Cox, Papanastassiou, Oreper, Andken, & DiCarlo, 2008)(Issa, Papanastassiou, Andken, & 114	

DiCarlo, 2010) allowing accurate assignment of sites to different face processing stages (n = 633 out of 115	

1891 total sites recorded were assigned as belonging to a face-selective subregion based on their 116	

spatial location; see Methods). Results are reported here for sites that were spatially located in a face-117	

selective subregion, that showed visual drive to any category in the screen set (see Methods), and that 118	

were subsequently tested with our face versus non-face challenge set (Figure 1B, left panel) (n = 115 119	

pIT, 70 cIT, and 40 aIT sites). 120	

 121	

 Our experimental design was intended to test previously proposed computational hypotheses of 122	

hierarchical neural dynamics during visual face processing (Figure 1B). Briefly, these hypotheses 123	

predict how stimulus preference (in this instance, for faces versus non-faces) might change over time in 124	

a neural population (Figure 1B, middle panel): (1) simple spike-rate adaptation predicts that initial rank-125	

order selectivity (i.e. relative stimulus preference) will be largely preserved (Figure 1B, dashed line) 126	

while neurons adapt their absolute response strength over time, (2) local normalization predicts that 127	

stronger responses are in some cases normalized to match weaker responses based on population 128	

activity to specific dimensions (Carandini et al., 1997); importantly, normalization is strongest for 129	

nuisance (non-coding) dimensions (e.g. low versus high stimulus contrast) and in its idealized form 130	

would not alter selectivity along coding dimensions (e.g. face versus non-face) (Figure 1B, dashed 131	

line), (3) evidence accumulation through temporal integration, winner-take-all through recurrent 132	

inhibition, or Bayesian inference through top-down feedback mechanisms all predict increasing 133	

selectivity for faces over time (Lee & Mumford, 2003) (Figure 1B, light gray line), and (4) predictive 134	

coding posits that, for neurons that are coding error, their responses would show increasing activity for 135	
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non-faces (images whose properties are inconsistent with predictions of a face) and thus decreasing 136	

face selectivity over time (Rao & Ballard, 1999) (Figure 1B, black line). Note, that error signaling is a 137	

qualitatively different computation than normalization, as error coding predicts a decreased response 138	

along the coding dimension (face versus non-face) whereas normalization would ideally not affect 139	

selectivity for faces versus non-faces and only affect variation along orthogonal, nuisance dimensions. 140	

Properly testing these predictions (no change in face selectivity, increased face selectivity, decreased 141	

selectivity to be anti-face preferring) requires measurements from the intermediate stages of the 142	

hierarchy as all of these models operate under the premise that the system builds and maintains a 143	

preference for faces at the top of the hierarchy (Figure 1B, right, and see Introduction). Thus, the 144	

intermediate stages (here pIT, see Figure 1B) are most likely to be susceptible to face/non-face 145	

confusion and thus be influenced by, for example, the top-down mechanisms posited in Bayesian 146	

inference and predictive coding where higher areas encode the face predictions that directly influence 147	

the responses of lower areas (Lee & Mumford, 2003)(Rao & Ballard, 1999). 148	

 149	

Face and non-face images driving similar initial responses in pIT 150	

Here, we chose to focus our key, controlled tests on pIT – an intermediate stage in the ventral stream 151	

hierarchy, but the first stage within IT where neural specialization for face detection (i.e. face vs. non-152	

face) has been reported (Grimaldi et al., 2016). Consistent with its intermediate position in the ventral 153	

visual system, we had previously found that pIT face-selective neurons are not truly selective for whole 154	

faces but respond to local face features, specifically those in the eye region (Issa & DiCarlo, 2012). 155	

Taking advantage of this prior result, we created both face and non-face stimuli that challenged the 156	

face processing system by strongly driving pIT responses, thus forcing the higher IT stages to complete 157	

the discrimination between face and challenging non-face images. To generate ambiguous face-like 158	

images, we systematically varied the positions of parts, in particular the eye, within the face (Issa & 159	

DiCarlo, 2012) (see Methods). This set included images that contained face parts in positions 160	
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consistent with a frontal view of a face or images that only differed in the relative spatial configuration of 161	

the face parts within the face outline (Figure 1B, left). Of the 82 images screened, we identified 21 part 162	

configurations that each drove the pIT population response to >90% of its response to a correctly 163	

configured whole face. Of those 21 images, 13 images were inconsistent with the part configuration of a 164	

frontal face (Figure 1B, black box). For the majority of the results that follow, we focus on comparing 165	

the neural responses to these 13 pIT-matched images that could not have arisen from frontal faces 166	

(referred to hereafter as “non-face images”) with the 8 images that could have arisen from frontal faces 167	

(referred to hereafter as “face images”). Again, we stress that these two groups of images were 168	

selected to evoke closely matched initial pIT population activity. 169	

 170	

 Importantly, the pIT-matched images used here presented a more stringent test of face vs. non-171	

face discrimination than prior work. Specifically, most prior work used images of faces and non-face 172	

objects (“classic images”) that contain differences across multiple dimensions including local contrast, 173	

spatial frequency, and types of features (Tsao et al., 2006)(Afraz, Kiani, & Esteky, 2006)(Moeller, 174	

Crapse, Chang, & Tsao, 2017)(Sadagopan, Zarco, & Freiwald, 2017). Consistent with this, we found 175	

that the population decoding classification accuracy of our recorded neural populations using these 176	

classic images (faces versus non-face objects) is near perfect (>99% in pIT, cIT, and aIT, n=30 sites 177	

per region). However, we found that population decoding classification accuracy for the pIT-matched 178	

face vs. non-face images we used here was near chance level (50%) in pIT (Figure 1C, blue bar; by 179	

comparison, classification accuracy for face versus non-face objects classification was 99.6% using the 180	

same pIT sites). Further downstream in regions cIT and aIT, we found that the linear population 181	

decoding classification of these pIT-matched face vs. non-face images was well above chance, 182	

suggesting that our pIT-matched face detection challenge is largely solved somewhere between pIT 183	

and aIT (Figure 1C). 184	

 185	
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Time course of responses in pIT for images with face versus non-face arrangements of parts 186	

We next closely examined the pIT neural response dynamics. To do this, we defined a face preference 187	

value (d’; see Methods) that measured each site’s average selectivity for the face images relative to the 188	

non-face images, and we asked how a given site’s preference evolved over time (see alternative 189	

hypotheses in Figure 1B). First, we present three example sites which were chosen based on having 190	

the largest selectivity (absolute d’) in the late phase (100-130 ms post image onset). In particular, most 191	

standard interpretations of face processing would predict a late phase preference for faces (d’ > 0). 192	

However, all three sites with the largest absolute d’ had evolved a strong late phase preference for the 193	

non-face images (d’ < 0) despite having had very similar rising edge responses to the face and non-194	

face stimulus classes (response in early phase from 60-90 ms) (Figure 2, left column). A late, non-face 195	

preference was not restricted to the example sites as a majority of pIT sites (66%) preferred non-faces 196	

over faces in the late response phase (prefer frontal face arrangement: 60-90 ms = 66% vs. 100-130 197	

ms = 34%; p = 0.000, n = 115) (Figure 3B, blue bars). 198	

 Next, we examined the dynamics of face selectivity across the pIT population as this is key to 199	

disambiguating among the competing models outlined earlier (Figure 1B). In the adaptation and 200	

normalization models, we would expect no change in the average population face selectivity, and the 201	

evidence accumulation, winner-take-all, or Bayesian inference models predict an increase in face 202	

selectivity over the population over time. Instead, we found that many sites significantly decreased their 203	

face preference over time similar to the three example sites. Of the 51 sites in our pIT sample that 204	

showed a significantly changing preference over time (p < 0.01 criterion for significant change in d’), 205	

84% of these sites showed a decreasing preference (n = 43 of 51 sites, p < 10^-6, binomial test, n = 206	

115 total sites) (Figure 3A, left column, light gray vs. black lines). This surprising trend -- decreasing 207	

face preference -- was strong enough that it erased any small, initial preference for images of frontally 208	

arranged face parts over the population (median d’: 60-90 ms = 0.11 + 0.02 vs. 100-130 ms = -0.12 + 209	

0.03, p = 0.000, n=115 sites), and this trend was observed in both monkeys when analyzed separately 210	
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(pM1 = 0.000, pM2 = 0.002, nM1 = 43, nM2 = 72 sites; Figure 4A). This decreasing face selectivity over 211	

time was driven by decreasing firing rates to the face images containing normally arranged face parts. 212	

Responses to these images were weaker by 18% on average in the late phase of the response 213	

compared to the early phase (Drate (60-90 vs 100-130 ms) = -18% + 4%, p = 0.000; n = 7 images) 214	

while responses to the non-face images with atypical spatial arrangements of face parts -- also capable 215	

of driving high early phase responses -- did not experience any firing rate reduction in the late phase of 216	

the response (Drate (60-90 vs 100-130 ms) = 2 + 1%, p = 0.467; n = 13 images). 217	

 218	

 The above observation of decreasing face preference over the pIT population seemed most 219	

consistent with the prediction of error coding models, but one potential confound was that initial 220	

responses to faces and challenging non-faces were not perfectly matched across the population (recall 221	

that we only required face and non-face images to drive a response >90% of the whole face response). 222	

As a result, initial selectivity was non-zero (d’ = 0.11, n=115 sites). This residual face preference may 223	

be small, but if this residual face selectivity is driven by nuisance dimensions, for example excess 224	

stimulus contrast in the face class relative to the non-face class, then the face class may have 225	

experienced stronger activity dependent adaptation or normalization resulting in a decreasing face 226	

preference over time. To more adequately limit general activity dependent mechanisms leading to 227	

decreasing face responses, we performed control analyses where initial activity was tightly matched per 228	

site or where the number of parts were matched across images. 229	

 230	

Controls in pIT for firing rate and low-level image variation 231	

To strictly control for the possibility that simple initial firing rate differences could predict the observed 232	

phenomenon, we re-computed selectivity after first matching initial responses site-by-site. For this 233	

analysis, images were selected on a per site basis to evoke similar initial firing rates (images driving 234	

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/092551doi: bioRxiv preprint first posted online Dec. 8, 2016; 

http://dx.doi.org/10.1101/092551


Issa,	Cadieu,	DiCarlo	 	 Error	signaling	in	the	ventral	stream	

	10 

initial response within 25% of synthetic whole face response for that site, at least 5 images required per 235	

class). This image selection procedure virtually eliminated any differences in initial responses between 236	

the face and non-face image classes and hence any firing rate difference driven by differences in 237	

nuisance parameters between faces and challenge non-faces (Figure 3C, 60-90 ms), yet we still 238	

observed a significant drop in preference for images with typical frontal face part arrangements versus 239	

atypical face part arrangements in pIT (Dd’ = -0.10 + 0.03, p = 0.001, n = 77) (Figure 3C, blue line). 240	

Thus, the remaining dependence of firing rate dynamics on the image class and not on initial response 241	

strength argued against an exclusively activity based explanation to account for decreasing neural 242	

responses to faces over time. Further arguing against this hypothesis, we found that the pattern of late 243	

phase population firing rates in pIT across images could not be significantly predicted from early phase 244	

pIT firing rates for each image (rpIT early, pIT late = 0.07 + 0.17, p = 0.347; n = 20 images). 245	

 Thus far, we have performed analyses where images from the face and non-face class were 246	

similar in their initially evoked response which equated images at the level of neural activity but 247	

produced images varying in the number of parts. An alternative is to match the number of face parts 248	

between the face and non-face classes as another means of limiting the differences in nuisance 249	

dimensions such as the contrast, spatial frequency and retinal position of energy across images (see 250	

examples in Figure 4B). When we recomputed selectivity across subsets of images containing a 251	

matched number of one, two, or four parts (n=5, 30, and 3 images, respectively), we still observed that 252	

pIT face selectivity decreased. For all three image subsets controlling the number of face parts, d’ 253	

began positive on average in the sampled pIT population (i.e. preferred frontal face part arrangements 254	

in 60-90 ms post-image onset) (median d’ for 60-90 ms = 0.13 + 0.05, 0.05 + 0.02, 0.33 + 0.09 for one, 255	

two, and four parts) and significantly decreased in the next phase of the response (100-130 ms post-256	

image onset) becoming negative on average (median d’ for 100-130 ms: -0.27 + 0.06, -0.14 + 0.02, -257	

0.04 + 0.12; one, two, four parts: p = 0.000, 0.000, 0.004, for d’ comparisons between 60-90 ms and 258	
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100-130 ms, n = 115, 115, 76 sites) (Figure 4B). A similar decreasing face selectivity profile was 259	

observed when we re-tested single part images at smaller (3o) and larger (12o) image sizes suggesting 260	

a dependence on the relative configuration of the parts and not on their absolute retinal location or 261	

absolute retinal size (median d’ for 60-90 ms vs. 100-130 ms: three degrees = 0.51 + 0.09 vs. -0.29 + 262	

0.14, twelve degrees = 0.07 + 0.14 vs. -0.11 + 0.14; n = 15; p = 0.000, 0.025, 0.07) (Figure 4C). Thus, 263	

we suggest that the decreasing population face selectivity dynamic in pIT is a fairly robust phenomenon 264	

specific to the face versus non-face dimension as this dynamic persists even when limiting potential 265	

variation across nuisance dimensions. This phenomenon can be distinguished from normalization 266	

mechanisms that would operate most strongly to reduce selectivity along nuisance dimensions rather 267	

than along dimensions that directly solve the face versus non-face discrimination challenge. 268	

 269	

Time course of responses in aIT and cIT for images with face versus non-face arrangements of 270	

parts 271	

Under the possibility that decreasing face selectivity in intermediate stage pIT is a signature of error 272	

signaling, we next asked whether the source of the prediction signal could be observed in higher 273	

cortical areas. In the anterior face-selective regions of IT which are furthest downstream of pIT and 274	

reflect additional stages of feedforward processing (see block diagram in Figure 1B), we did not 275	

observe the strong decreases in the selectivity profile seen in pIT. Indeed, the three sites with the 276	

greatest selectivity (absolute d’) in the late response phase (100-130 ms) in our aIT sample all 277	

displayed a preference for frontal face part arrangements (d’ > 0) (Figure 2, right column). Also, in 278	

contrast to the dynamic selectivity profiles observed in many pIT sites, 98% of aIT sites (39 of 40) did 279	

not significantly change their relative preference for face vs. non-face arrangements of the parts (p < 280	

0.01 criterion for significant change at the site level) (Figure 3A, right column, bottom row, dark gray 281	

sites). Rather, we observed a stable selectivity profile over time in aIT (median d’: 60-90 ms = 0.13 + 282	

0.03 vs. 100-130 ms = 0.17 + 0.03, p = 0.34, n=40 sites). As a result, the majority of anterior sites 283	
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preferred images with typical frontal arrangements of the face parts in the late phase of the response 284	

(prefer face: 60-90 ms = 78% of sites vs. 100-130 ms = 78% of sites; p = 0.451, n = 40 sites; Figure 285	

3B, red bars) despite only a minority (34%) of upstream sites in pIT preferring these images in their late 286	

response. Thus, spiking responses of individual aIT sites were as expected from a computational 287	

system whose purpose is to detect faces, as previously suggested (Freiwald & Tsao, 2010), and aIT 288	

serves as one candidate for the putative prediction signal underlying face prediction errors. 289	

 290	

 In cIT whose anatomical location is intermediate to pIT and aIT, we observed many sites with 291	

decreasing selectivity (Figure 2C & 3A, middle columns), a dynamic that persisted even when we 292	

tightly matched initial responses on a site by site basis similar to pIT (Figure 2C, green line). The 293	

overall stimulus preference in cIT was intermediate to that of pIT and aIT (Figure 3B) consistent with 294	

the intermediate position of cIT in the IT hierarchy. Interestingly, we found that the patterns of 295	

responses across images in the early phases of cIT and aIT activity were significant predictors of late 296	

phase activity in pIT (rcIT early, pIT late = -0.52 + 0.11, p = 0.000; raIT early, pIT late = -0.36 + 0.14, p = 0.012; 297	

npIT=115, ncIT=70, naIT=40 sites; n = 20 images), even better predictors than early phase activity in pIT 298	

itself (rpIT early, pIT late = 0.07 + 0.17, p = 0.347). That is, for images that produced high early phase 299	

responses in cIT and aIT, the following later phase responses of units in the lower level area (pIT) 300	

tended to be low, consistent with error coding models which posit that feedback from higher areas (in 301	

the form of predictions) would contribute to the decreasing selectivity observed in lower areas. 302	

 303	

Computational models of neural dynamics in IT 304	

We next proceeded to formalize the conceptual ideas introduced in Figure 1B and build neurally 305	

mechanistic, dynamical models of gradually increasing complexity to determine the minimal set of 306	

assumptions that could capture our empirical findings of non-trivial, dynamic selectivity changes during 307	
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face detection across face-selective subregions in IT. Previous functional and anatomical data show 308	

that the face-selective subregions in IT are connected forming an anterior to posterior hierarchy and 309	

show that pIT serves as the primary input into this hierarchy (Moeller et al., 2008)(Freiwald & Tsao, 310	

2010)(Grimaldi et al., 2016). Thus, we evaluated dynamics in different hierarchical architectures using a 311	

linear dynamical systems modeling framework where pIT, cIT, and aIT act as sequential stages of 312	

processing (Figure 5 and see Methods). A core principle of feedforward ventral stream models is that 313	

object selectivity is built by stage-wise feature integration in a manner that leads to relatively low 314	

dimensional representations at the top of the hierarchy abstracted from the high-dimensional input 315	

layer. We were interested in how signals temporally evolve across a similar architectural layout. We 316	

used the simplest feature integration architecture where a unit in a downstream area linearly sums the 317	

input from units in an upstream area, and we stacked this computation to form three layer networks 318	

(Figure 5B). This simple, generic feedforward encoding model conceptualizes the idea that different 319	

types of evidence, local and global (i.e. information about the parts and the relative spatial arrangement 320	

of parts), have to converge and be integrated to separate face from non-face images in our image set. 321	

We used linear networks as monotonic nonlinearities can be readily accommodated in our framework 322	

(Seung, 1997)(Rao & Ballard, 1999)(also see Figure 7C). Importantly, we used a simple encoding 323	

scheme as our goal was not to build full-scale deep neural network encoding models of image 324	

representation (Yamins et al., 2014) but to bring focus to an important biological property that is often 325	

not considered in deep nets, neural dynamics. 326	

 We implemented a range of ideas previously proposed in the literature. The functional 327	

implications of these ideas were highlighted in Figure 1B, but at a mechanistic level, these functional 328	

properties can be directly realized via different recurrent processing motifs between neurons (Figure 5, 329	

base feedforward model (first column) is augmented with recurrent connections to form new models 330	

(remaining columns)). For example, self-connections can be viewed as implementing spike rate 331	

adaptation in a feedforward architecture (Figure 5A, top row), lateral connections support winner-take-332	
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all or normalization mechanisms (Carandini et al., 1997) (Figure 5A, second, third, and fourth 333	

columns), and top-down connections implement Bayesian inference (Seung, 1997) (Figure 5A, fifth 334	

and sixth columns). Here, normalization is implemented by a leak term that scales adaptation (the 335	

degree of decay in the response) and is controlled recursively by the summed activity of the network 336	

(Carandini et al., 1997), ultimately scaling down responses to strong driving stimuli over time. To 337	

constrain our choice of a feedback-based model, we took a normative approach minimizing a quadratic 338	

reconstruction cost between stages as the classical reconstruction cost is at the core of an array of 339	

hierarchical generative models including hierarchical Bayesian inference (Lee & Mumford, 2003), 340	

Boltzmann machines (Ackley, Hinton, & Sejnowski, 1985), analysis-by-synthesis networks (Seung, 341	

1997), sparse coding (Olshausen & Field, 1996), predictive coding (Rao & Ballard, 1999), and 342	

autoencoders in general (Rifai, Vincent, Muller, Glorot, & Bengio, 2011). Optimizing a quadratic loss 343	

results in feedforward and feedback connections that are symmetric -- reducing the number of free 344	

parameters -- such that inference on the represented variables at any intermediate stage is influenced 345	

by both bottom-up sensory evidence and current top-down interpretations. Critically, a common feature 346	

of this large model family is the computation of between-stage error signals via feedback, which is 347	

distinct from state-estimating model classes (i.e. feedforward models) that do not compute or propagate 348	

errors. A dynamical implementation of such a network uses leaky integration of error signals which, as 349	

shared computational intermediates, guide gradient descent of the values of the represented variables 350	

to a previously learned target value (∆activity of each neuron => online inference) or descend the 351	

connection weights to values that give the best future behavior (∆synaptic strengths => offline learning), 352	

here defined as an unsupervised reconstruction goal (similar results were found using other goals and 353	

networks such as supervised discriminative networks; see Figure 7C). 354	

 When we fit each of the models to our neural data, they generally produced an increase in 355	

selectivity from the first stage of the network to the later stages of the network. This increase is not 356	

surprising because the models had built-in converging feedforward connections from the first to second 357	
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to third stages (Figure 6A, first five columns, compare blue to red curves). However, discrepancies 358	

between models emerged in the lower stages where we found that neither the lateral inhibition model, 359	

nor the normalization model, could capture the decreasing selectivity phenomenon observed in pIT. 360	

Instead, the selectivity of these models simply increased to a saturation level set by the leak term 361	

(shunting inhibition) in the system (Figure 6A, first five columns). Similar behavior was present when 362	

we tried a nonlinear implementation of the normalization model that more powerfully modulated 363	

shunting inhibition (Carandini et al., 1997). That normalization proved insufficient to generate the 364	

observed neural dynamics can be explained by the fact that the normalized response to a stimulus 365	

cannot easily fall below the response to a stimulus that was initially similar in strength. Thus, a 366	

decreasing average preference for a stimulus across a population of cells (i.e. Figures 2-4, pIT data) 367	

for similar levels of average input is difficult when only using a basic normalization model mediated by 368	

surround (within-stage) suppression. 369	

 370	

 In contrast to the above models, we found that the feedback model capable of computing 371	

hierarchical error signals naturally displayed a strong decrease of selectivity in a sub-component of its 372	

first processing stage -- qualitatively similar behavior to the selectivity decrease that we observed in 373	

many pIT and cIT neural sites. Specifically, this model displayed these dynamics in the magnitude of its 374	

reconstruction error signals but not in its state signals (the feature values) (Figure 6A, compare fifth 375	

and sixth columns). These error signals integrate converging state signals from two stages -- one 376	

above (prediction) and one below (sensory evidence). The term “error” is thus meaningful in the hidden 377	

processing stages where state signals from two stages can converge. The top nodes of a hierarchy 378	

receive little descending input and hence do not carry additional errors with respect to the desired 379	

computation; rather, top nodes convey the face predictions that influence errors in bottom nodes. This 380	

behavior in the higher processing stages is consistent with our observation of explicit representation of 381	

faces in aIT in all phases of the response (Figures 2-3) and with similar observations of decodable 382	
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identity signals by others in all phases of aIT responses for faces (Meyers, Borzello, Freiwald, & Tsao, 383	

2015) and objects (Hung et al., 2005)(Majaj et al., 2015). We also found similar error dynamics when 384	

using a simpler two-layer network as opposed to three layers suggesting that these error signal 385	

dynamics along with prediction signals emerge even in the simplest cascaded architecture (Figure 7A). 386	

 387	

Predictions of an error coding hierarchical model 388	

While our neural observations at multiple stages of the IT hierarchy led us to the error coding 389	

hierarchical model above, a stronger test of the idea of error signaling is whether it predicts other IT 390	

neural phenomena. To identify stimulus regimes that would lead to insightful predictions, we asked in 391	

what way would the behavior of error-estimating hierarchical models differ most from the behavior of 392	

generic feedforward state-estimating models. Because our feedback-based model uses feedforward 393	

inference at its core, it behaves similarly to a state-estimating hierarchical feedforward model when the 394	

statistics of inputs match the learned feedforward weight pattern of the network (i.e. ‘natural’ images 395	

drawn from everyday objects and scenes) since for these inputs, feedforward inferences derived from 396	

the sensory data are aligned with top-down expectations. Thus, predictions of feedback-based models 397	

that could distinguish them from feedforward-only models are produced when the natural statistics of 398	

images are altered so that they differ from the feedforward patterns previously learned by the network 399	

and hence differ from the predictions generated in the network. We have (above) considered one such 400	

type of alteration: images where local face features are present but altered from their naturally 401	

occurring (i.e. statistically most likely) arrangement in frontal faces. Next, we tested two other image 402	

manipulations from recent physiology studies which yielded novel neural phenomena that lacked a 403	

principled, model-based explanation (Freiwald, Tsao, & Livingstone, 2009)(Meyer et al., 2014). To test 404	

whether the error coding hierarchical model family displays these behaviors, we fixed the architectural 405	

parameters derived from our fitting procedure in Figure 6 and simply varied the input to this network, 406	

specifically the correlation between the inputs and the network’s feedforward weight pattern, in order to 407	
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match the nature of the image manipulations performed in prior experiments. 408	

 409	

Sublinear integration of the face features. In the face-selective subregion of cIT, the sum of the 410	

responses to the face parts exceeds the response to the whole face when averaging firing rates over a 411	

200 ms window (Freiwald et al., 2009; see their Figure 2C), and we observed a similar phenomenon in 412	

the face-selective subregion in pIT (Issa & DiCarlo, 2012). Interestingly, examining the dynamics of part 413	

integration more closely within the first 100ms of the response reveals that the response to the whole 414	

face does begin at a level similar to the sum of the responses to the face parts but becomes sublinear 415	

in the late phase (whole face response relatively low compared to linear prediction from parts 416	

responses) (ratio of sum of responses to parts vs. response to whole: 60-90 ms = 1.5 + 0.1, 100-130 417	

ms = 4.6 + 0.3; p = 0.000, n = 33 sites) (Figure 8A, left panel). This result runs counter to what would 418	

be expected in a model where selectivity for the whole face is built from the conjunction of the parts. In 419	

such a model, the population response to the whole face would be at least as large if not greater 420	

(superlinear) than the summed responses to the individual features. To test whether an error coding 421	

model exhibited the phenomenon of sublinear feature integration at the population level, we compared 422	

the response with all inputs active (co-occurring features) to the sum of the responses when each input 423	

was activated independently (individual features). The reconstruction errors in our feedback-based 424	

model showed a strong degree of sublinear integration of the inputs such that the response to the 425	

simultaneous inputs (whole) was much smaller than what would be predicted by a linear sum of the 426	

responses to each input alone (parts), and the model’s sublinear integration behavior qualitatively 427	

replicated the time course observed in pIT without any additional fitting of parameters (Figure 8A, right 428	

panel). Although we certainly expect that similar sublinear integration may also be observed in a 429	

normalization model, this would require a particularly strong form of normalization since population 430	

activity to the whole face would have to be normalized to nearly the same level as that for an individual 431	

part in the late response phase (ratio of response to single part vs. response to whole = 0.92 + 0.06, 432	
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100-130 ms, n = 33 sites) despite being three times larger during the early response phase (ratio of 433	

response to single part vs. response to whole = 0.3 + 0.02, 60-90 ms, n = 33 sites). Furthermore, the 434	

stacked normalization model could not account for the main dynamical phenomenon that we observed 435	

(Figure 6); therefore, an error coding perspective may provide a more parsimonious account of the 436	

observed set of dynamical phenomena. 437	

 438	

Evolution of neural signals across time. Neural responses to familiar images are known to rapidly 439	

attenuate in IT when compared to responses to novel images (Freedman, Riesenhuber, Poggio, & 440	

Miller, 2006)(Woloszyn & Sheinberg, 2012)(Meyer & Olson, 2011). This observation seems to 441	

contradict what would be predicted by simple Hebbian potentiation for the more exposed stimuli. 442	

Furthermore, familiar image responses show much sharper temporal dynamics than responses to novel 443	

images when presented repeatedly (Meyer et al., 2014). These qualitatively different dynamics for 444	

familiar versus novel images are surprising given that stimuli are drawn from the same distribution of 445	

natural images and are thus matched in their average image-level statistical properties (color, spatial 446	

frequency, contrast). To test whether our network displayed these different dynamical behaviors, we 447	

simulated familiar inputs as those that match the learned weight pattern of a high-level detector and 448	

novel inputs as those with the same overall input level but with weak correlation to the learned network 449	

weights (here, we have extended the network to include two units in the output stage corresponding to 450	

storage of the two familiarized input patterns to be alternated; conceptually, we consider these familiar 451	

pattern detectors as existing downstream of IT in a region such as perirhinal cortex which has been 452	

shown to code familiarized image statistics and memory-based object signals (Murray, Bussey, & 453	

Saksida, 2007)). We repeatedly alternated two familiar inputs or two novel inputs and found that error 454	

coding model responses in the hidden processing stage were temporally sharper for familiar inputs that 455	

matched the network’s feedforward weight patterns compared to novel patterns of input (pseudo-456	

randomly drawn; see Methods), consistent with the previously observed phenomenon (Figure 8B; data 457	
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reproduced with permission from Meyer et al., 2014). Model responses reproduced additional details of 458	

the neural dynamics including a large initial peak followed by smaller peaks for responses to novel 459	

inputs and a phase delay in the oscillations of responses to novel inputs compared to familiar inputs. 460	

Intuitively, these dynamics are composed of two phases after the initial response transient to the onset 461	

of the image sequence. In the first phase, familiar patterns lead to lower errors and hence lower neural 462	

responses than random patterns (Figure 8B, red curve drops below the black curve after the onset 463	

response), similar to the observed weaker response to more familiar face-like images present in our 464	

data (Figure 2, red curves drop below black curves in pIT example sites). When the familiar pattern A 465	

is switched to another familiar pattern B, this induces a short-term error in adjusting to the new pattern 466	

(Figure 8B, red curve briefly goes above the black curve during pattern switch and then decreases). In 467	

contrast, two unfamiliar patterns are closer together in the high-level encoding space than two learned 468	

patterns (Figure 8B, inset at right), and the switch between two unlearned patterns introduces relatively 469	

less shift in top-down signals and hence a smaller dynamical change in error signals. This result 470	

demonstrates that our model, derived from fitting only the first 70 ms (60-130 ms post image onset) of 471	

IT responses to face images, can extend to much longer timescales and may generalize to studies of 472	

images besides face images. 473	

 474	

Dynamical properties of neurons across cortical lamina 475	

In the large family of state-error coding hierarchical networks, a number of different cortical circuits are 476	

possible. A key distinction of two such circuit mapping hypotheses (predictive coding versus error 477	

backpropagation) is the expected laminar location of state coding neurons transmitting information 478	

about features in the image. In typical neural network implementations, the feedforward projecting 479	

neurons in superficial lamina are presumed to encode estimates about states of the visual world (e.g. 480	

presence of a face). In contrast, predictive coding posits that superficial layers contain error units and 481	

that errors are projected forward to the next cortical level (Rao & Ballard, 1999)(Friston & Kiebel, 482	
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2009)(Hyvärinen, Hurri, & Hoyer, 2009). State and error signals can be distinguished by their dynamical 483	

signatures in our leading model, which was fit on error signals but produces predictions of the 484	

corresponding state signals underlying the generation of errors. Since state units are integrators (see 485	

Methods), they have slower dynamics than error units leading to longer response latencies and a 486	

milder decay in responses (Figure 8C, red curve in right panel). To test this prediction, we localized our 487	

recordings relative to the cortical mantle by co-registering the x-ray determined locations of our 488	

electrode (~400 micron in vivo accuracy; (Issa et al., 2010)) to structural MRI data (see Methods). 489	

When we separated units into those at superficial depths closer to the pial surface (1/3 of our sites; 490	

corresponds to approximately 0 to 1 mm in depth) versus those in the deeper layers (remaining 2/3 of 491	

sites, ~1 to 2.5 mm in depth), we found a longer latency and less response decay in superficial units 492	

consistent with the expected profile of state units (Figure 8C, left panel). Thus, the trend toward state-493	

like signals in superficial layers is more consistent with typical error backpropagation models (states fed 494	

forward, errors fed backward) than with predictive coding proposals. In fact, the latency difference 495	

between cortical lamina in pIT (deep vs superficial: 66.0 + 1.7 vs 76.0 + 1.8 ms, p = 0.002) was greater 496	

than the conduction delay from pIT to cIT (i.e. from superficial layers of pIT to the deeper layers of cIT) 497	

(superficial pIT vs deep cIT: 76.0 + 1.8 vs 75.5 + 2.0 ms, p = 0.15) even though laminar distances 498	

within pIT are smaller than the distance traveled between cortical stages pIT and cIT. Thus, instead of a 499	

simple conduction delay accounting for latency differences across lamina, our model suggests that 500	

temporal integration of inputs in superficial lamina, more consistent with the behavior of state units as 501	

opposed to error units, may drive the lagged dynamical properties of neurons in superficial lamina. 502	

 503	

DISCUSSION 504	

We have measured neural responses during a difficult frontal face detection task across the IT 505	

hierarchy and demonstrated that the population preference for faces in the intermediate (a.k.a hidden) 506	

processing stages decreases over time – that is population responses at lower levels of the hierarchy 507	
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(pIT and cIT) rapidly evolved toward preferring unnatural, non-face part arrangements whereas the top 508	

level (aIT) rapidly developed and then maintained a preference for natural, frontal face part 509	

arrangements. The relative speed of selectivity changes in pIT (~30 ms) makes high-level explanations 510	

based on fixational eye movements or shifts in attention (e.g. from behavioral surprise to unnatural 511	

arrangements of face parts) unlikely as saccades and attention shifts occur on slower timescales 512	

(hundreds of milliseconds) (Egeth & Yantis, 1997). The presence of stronger responses to face images 513	

than to non-face images in aIT further argues against general arousal effects as these would have been 514	

expected to cause stronger responses to challenging non-face images in aIT. Rather, the rapid 515	

propagation of neural signals over tens of milliseconds suggested intracortical processing within the 516	

ventral visual stream in a manner that was not entirely consistent with a pure feedforward model, even 517	

when we included strong nonlinearities in these models such as normalization and even when we 518	

stacked these operations to form more complex three stage models. However, augmenting the 519	

feedforward model so that it represented the errors generated during hierarchical processing produced 520	

the observed neural dynamics and hierarchical signal propagation (Figures 6-7). This view argues that 521	

many IT neurons code error signals. Using this new modeling perspective, we went on to generate 522	

predictions of previously observed IT neural phenomena (Figure 8). 523	

 524	

Comparison to previous neurophysiology studies in IT 525	

Our suggestion that many IT neurons code errors is consistent with the observation of strong 526	

responses to extremes in face space (Leopold, Bondar, & Giese, 2006) providing an alternative 527	

interpretation to the prior suggestion that cIT neurons are not tuned for typical faces but are instead 528	

tuned for atypical face features (i.e. extreme feature tuning) (Freiwald et al., 2009). In that prior work, 529	

the response preference of each neuron was determined by averaging over a long time window (~200 530	

ms). By looking more closely at the fine time scale dynamics of the IT response, we suggest that this 531	

same extreme coding phenomenon can instead be interpreted as a natural consequence of networks 532	
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that have an actual tuning preference for typical faces (as evidenced by an initial response preference 533	

for typical frontal faces in pIT, cIT, and aIT; Figure 3B) but that also compute error signals with respect 534	

to that preference. Under the present hypothesis, some IT neurons are preferentially tuned to typical 535	

spatial arrangements of face features, and other IT neurons are involved in coding errors with respect 536	

to those typical arrangements. We speculate that these intermixed state estimating and error coding 537	

neuron populations are both sampled in standard neural recordings of IT, even though only state 538	

estimating neurons are truly reflective of the tuning preferences of that IT processing stage. This 539	

intermixed view of IT neural signaling is further supported by recent studies demonstrating correlates of 540	

temporal prediction errors to image sequences in IT (Meyer & Olson, 2011) including the face-selective 541	

subregion of cIT (Schwiedrzik & Freiwald, 2017). 542	

 543	

 The precise fractional contribution of errors to total neural activity is difficult to estimate from our 544	

data. Under the primary image condition tested, not all sites significantly decreased their selectivity 545	

(~60% did not change their selectivity). We currently interpret these sites as coding state (feature) 546	

estimates (Figure 3A, light and dark gray lines in top and bottom rows, respectively), and we did 547	

observe evidence of emergence of state-like signals in our superficial neural recordings (Figure 8C). 548	

Alternatively, at least some of the non-reversing sites might be found to code errors under other image 549	

conditions than the one that we tested. Furthermore, while in our primary image condition selectivity 550	

decreases only accounted for ~15% of the overall spiking modulation (Figure 6A, data panel), larger 551	

modulations in late phase neural firing (50-100%) are possible under other image conditions (Figure 552	

8A,B). At a computational level, the absolute contribution of error signals to spiking may not be the 553	

critical factor as even a small relative contribution may have important consequences in the network. 554	

 555	

Comparison across dynamical models of neural processing 556	

Our goal was to test a range of existing recurrent models by recording neural dynamics across multiple 557	
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cortical stages which provided stronger constraints on computational models than fitting neural 558	

responses from only one area as in prior work (Carandini et al., 1997)(Rao & Ballard, 1999). Crucially, 559	

we found that the multi-stage neural dynamics observed in our data could not be adequately fit by only 560	

using recurrences within a stage such as adaptation, lateral inhibition, and standard forms of 561	

normalization (Figure 6). These results did not change when we made our simple networks more 562	

complex by adding more stages (compare Figure 6 versus Figure 7) or by using more realistic model 563	

units with monotonic nonlinearities similar to a spiking nonlinearity (data not shown). Indeed, we 564	

specifically chose our stimuli to evoke similar levels of within stage neural activity to limit the effects of 565	

known mechanisms that depend on activity levels within an area (e.g. adaptation, normalization), and 566	

we fully expect that these activity dependent mechanisms would operate in parallel to top-down, 567	

recurrent processes during general visual processing. We emphasize that we only tested the standard 568	

form of normalization as originally proposed, using within stage pooling and divisive mechanisms 569	

(Carandini et al., 1997). Since that original mechanistic formulation, normalization has evolved to 570	

become a term that broadly encapsulates many forms of suppression phenomena and can include both 571	

lateral interactions within an area and feedback interactions from other areas (Nassi, Gómez-Laberge, 572	

Kreiman, & Born, 2014)(Coen-Cagli, Kohn, & Schwartz, 2015). Thus, while our results do not follow 573	

from the original mechanistic form of normalization, they may yet fall under normalization more broadly 574	

construed as a term for suppression phenomena (error coding would require a similar suppressive 575	

component). Here, we have provided a normative model for how top-down suppression would follow 576	

from the well-defined computational goals of many hierarchical neural network models. 577	

 578	

Error signals generated across different hierarchical inference and learning models 579	

The notion of error is inherent to many existing models in the literature that go beyond the basic 580	

feedforward, feature estimation class. Example models use errors for guiding top-down inference by 581	

computing errors implicitly (hierarchical Bayesian inference (Seung, 1997)(Lee & Mumford, 2003)) or by 582	
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representing errors explicitly (predictive coding (Rao & Ballard, 1999)). In addition, errors can be used 583	

specifically for driving unsupervised learning (autoencoder (Rifai et al., 2011)) or supervised learning 584	

(classic error backpropagation (Williams & Hinton, 1986)). Recently, models have incorporated aspects 585	

of both inference and learning (Salakhutdinov & Hinton, 2012)(Patel, Nguyen, & Baraniuk, 2015). A 586	

key, unifying feature across inference and learning models is the need to compute an error signal 587	

between processing stages. This error signal can be in the form of a generative, reconstruction cost 588	

(stage n predicting stage n-1) or a discriminative, construction cost (stage n-1 predicting stage n). 589	

Across-stage “performance” error terms are used in all model cost functions, are typically the only term 590	

combining signals from different model stages, and are distinct from within-stage “regularization” terms 591	

(i.e. sparseness or weight decay) in driving network behavior (Marblestone, Wayne, & Kording, 2016). 592	

The present study provides evidence that such errors are not only computed, but that they are explicitly 593	

encoded in spiking rates. We emphasize that this result at the level of population dynamics was robust 594	

across choices of cost function such as those used in the literature; we tested models with different 595	

unsupervised and supervised performance errors (reconstruction, nonlinear reconstruction, and 596	

discriminative) and found similar population level error signals across these networks in the basic two-597	

layer implementation (Figure 7C). Thus, errors as generally instantiated in the state-error coding 598	

hierarchical model family provide a good approximation to IT population neural dynamics. 599	

 600	

Computational utility of coding errors in addition to states 601	

In error-computing networks, errors provide control signals for guiding learning giving these networks 602	

additional adaptive power over basic feature estimation networks. This property helps augment the 603	

classical, feature coding view of neurons which, with only feature activations and Hebbian operations, 604	

does not lead to efficient learning in the manner produced by gradient descent using error 605	

backpropagation (Williams & Hinton, 1986). Observation of error signals may provide insight into how 606	

more intelligent unsupervised and supervised learning algorithms such as backpropagation could be 607	
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plausibly implemented in the brain. A potentially important contribution of this work is the suggestion 608	

that gradient descent algorithms are facilitated by using an error code so that efficient learning is 609	

reduced to a simple Hebbian operation at synapses and efficient inference is simply integration of 610	

inputs at the cell body (see eqn 10 and text in Methods). This representational choice, to code the 611	

computational primitives of gradient descent in spiking activity, would simply leverage the existing 612	

biophysical machinery of neurons for inference and learning. 613	

 614	

MATERIALS & METHODS 615	

Animals and surgery. All surgery, behavioral training, imaging, and neurophysiological techniques are 616	

identical to those described in detail in previous work (Issa & DiCarlo, 2012). Two rhesus macaque 617	

monkeys (Macaca mulatta) weighing 6 kg (Monkey 1, female) and 7 kg (Monkey 2, male) were used. A 618	

surgery using sterile technique was performed to implant a plastic fMRI compatible headpost prior to 619	

behavioral training and scanning. Following scanning, a second surgery was performed to implant a 620	

plastic chamber positioned to allow targeting of physiological recordings to posterior, middle, and 621	

anterior face patches in both animals. All procedures were performed in compliance with National 622	

Institutes of Health guidelines and the standards of the MIT Committee on Animal Care and the 623	

American Physiological Society. 624	

 625	

Behavioral training and image presentation. Subjects were trained to fixate a central white fixation 626	

dot during serial visual presentation of images at a natural saccade-driven rate (one image every 200 627	

ms). Although a 4o fixation window was enforced, subjects generally fixated a much smaller region of 628	

the image (<1o) (Issa & DiCarlo, 2012). Images were presented at a size of 6o except for control tests at 629	

3o and 12o sizes (Figure 4C), and all images were presented for 100 ms duration with 100 ms gap 630	

(background gray screen) between each image. Up to 15 images were presented during a single 631	

fixation trial, and the first image presentation in each trial was discarded from later analyses. Five 632	
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repetitions of each image in the general screen set were presented, and ten repetitions of each image 633	

were collected for all other image sets. The screen set consisted of a total of 40 images drawn from 634	

four categories (faces, bodies, objects, and places; 10 exemplars each) and was used to derive a 635	

measure of face versus non-face object selectivity. Following the screen set testing, some sites were 636	

tested using an image set containing images of face parts presented in different combinations and 637	

positions (Figure 1B, left panel). We first segmented the face parts (eye, nose, mouth) from a monkey 638	

face image. These parts were then blended using a Gaussian window, and the face outline was filled 639	

with pink noise to create a continuous background texture. A face part could appear on the outline at 640	

any one of nine positions on an evenly spaced 3x3 grid. Although the number of possible images is 641	

large (49 = 262,144 images), we chose a subset of these images for testing neural sites (n = 82 642	

images). Specifically, we tested the following images: the original whole face image, the noise-filled 643	

outline, the whole face reconstructed by blending the four face parts with the outline, all possible single 644	

part images where the eye, nose, or mouth could be at one of nine positions on the outline (n = 3x9 = 645	

27 images), all two part images containing a nose, mouth, left eye, or right eye at the correct outline-646	

centered position and an eye tested at all remaining positions (n = 4*8-1 = 31 images), all two part 647	

images containing a correctly positioned contralateral eye while placing the nose or mouth at all other 648	

positions (n = 2*8-2 = 14 images), and all correctly configured faces but with one or two parts missing 649	

besides those already counted above (n = 4+3 = 7 images). The particular two-part combinations 650	

tested were motivated by prior work demonstrating the importance of the eye in early face processing 651	

(Issa & DiCarlo, 2012), and we sought to determine how the position of the eye relative to the outline 652	

and other face parts was encoded in neural responses. The three and four part combinations were 653	

designed to manipulate the presence or absence of a face part for testing the integration of face parts, 654	

and in these images, we did not vary the positions of the parts from those in a naturally occurring face. 655	

In a follow-up test on a subset of sites, we permuted the position of the four face parts under the 656	

constraint that they still formed the configuration of a naturally occurring face (i.e. preserve the ‘T’ 657	
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configuration, n = 10 images; Figure 4B). We tested single part images at 3o and 12o sizes in a subset 658	

of sites (n = 27 images at each size; Figure 4C). Finally, we measured the responses to the individual 659	

face parts in the absence of the outline (n = 4 images; Figure 8A). 660	

 661	

MR Imaging and neurophysiological recordings. Both structural and functional MRI scans were 662	

collected in each monkey. Putative face patches were identified in fMRI maps of face versus non-face 663	

object selectivity in each subject. A stereo microfocal x-ray system (Cox et al., 2008) was used to guide 664	

electrode penetrations in and around the fMRI defined face-selective subregions of IT. X-ray based 665	

electrode localization was critical for making laminar assignments since electrode penetrations are 666	

often not perpendicular to the cortical lamina when taking a dorsal-ventral approach to IT face patches. 667	

Laminar assignments of recordings were made by co-registering x-ray determined electrode 668	

coordinates to MRI where the pial-to-gray matter border and the gray-to-white matter border were 669	

defined. Based on our prior work estimating sources of error (e.g. error from electrode tip localization 670	

and brain movement), registration of electrode tip locations to MRI brain volumes has a total of <400 671	

micron error which is sufficient to distinguish deep from superficial layers (Issa et al., 2013). Multi-unit 672	

activity (MUA) was systematically recorded at 300 micron intervals starting from penetration of the 673	

superior temporal sulcus such that all sites at these regular intervals were tested with a screen set 674	

containing both faces and non-face objects, and a subset of sites that were visually driven were further 675	

tested with our main image set manipulating the position of face parts. Although we did not record 676	

single-unit activity, our previous work showed similar responses between single-units and multi-units on 677	

images of the type presented here (Issa & DiCarlo, 2012), and our results are consistent with 678	

observations in previous single-unit work in IT (Freiwald et al., 2009). Recordings were made from PL, 679	

ML, and AM in the left hemisphere of monkeys 1 and 2 and additionally from AL in monkey 2. AM and 680	

AL are pooled together in our analyses forming the aIT sample while PL and ML correspond to the pIT 681	

and cIT samples, respectively. 682	
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 683	

Neural data analysis. The face patches were physiologically defined in the same manner as in our 684	

previous study (Issa & DiCarlo, 2012). Briefly, we fit a graded 3D sphere model (linear profile of 685	

selectivity that rises from a baseline value toward the maximum at the center of the sphere) to the 686	

spatial profile of face versus non-face object selectivity across our sites. We tested spherical regions 687	

with radii from 1.5 to 10 mm and center positions within a 5 mm radius of the fMRI-based centers of the 688	

face patches. The resulting physiologically defined regions were 1.5 to 3 mm in diameter. Sites which 689	

passed a visual response screen (mean response in a 60-160 ms window >2*SEM above baseline for 690	

at least one of the four categories in the screen set) were included in further analysis. All firing rates 691	

were baseline subtracted using the activity in a 25-50 ms window following image onset averaged 692	

across all repetitions of an image. Finally, given that the visual response latencies in monkey 2 were on 693	

average 13 ms slower than those in monkey 1 for corresponding face-selective regions, we applied a 694	

single latency correction (13 ms shift to align monkey 1 and monkey 2’s data) prior to averaging across 695	

monkeys. This was done so as not to wash out any fine timescale dynamics by averaging. Similar 696	

results were obtained without using this latency correction as dynamics occurred at longer timescales 697	

(~30 ms). This single absolute adjustment was more straightforward than the site-by-site adjustment 698	

used in our previous work (Issa & DiCarlo, 2012) (though similar results were obtained using this 699	

alternative latency correction); even when each monkey was analyzed separately, we still observed pIT 700	

selectivity dynamics (Figure 4A). Images that produced an average population response > 0.9 of the 701	

initial response (60-100 ms) to a face image with all face parts arranged in their typical positions in a 702	

frontal face were analyzed further (Figures 2 and 3). Stimulus selection was intended to limit 703	

potentially confounding differences in visual drive between image classes. In a control test, we also 704	

repeated our analysis by selecting images on a site-by-site basis where images with frontal face and 705	

non-face arrangements of parts were chosen to be within 0.75x to 1.25x of the initial response to the 706	

complete face image (minimum of five face and five non-face images in this response range for 707	
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inclusion of site in analysis). In follow-up analyses of population responses, we specifically limited 708	

comparison to images with the same number of parts (Figure 4B,C). For example, for single part 709	

images, we used the image with the eye in the upper, contralateral region of the outline as a reference 710	

requiring a response > 0.9 of the initial population response to this reference for inclusion of the images 711	

in this analysis. We found that four other images of the 27 single-part images elicited a response at 712	

least as large as 90% of the response to this standard image. For images containing all four face parts, 713	

we used the complete, frontal face as the standard and found non-face arrangements of the four face 714	

parts that drove at least 90% of the early response to the whole face (2 images out of 10 tested). To 715	

compute individual site d’ for each of these stimulus partitions (e.g. typical versus atypical 716	

arrangements of 1 face part), we combined all presentations of images with frontal face arrangements 717	

and compared these responses to responses from all presentations of images with non-face 718	

arrangements using d’ = (u1- u2)/((var1+var2)/2)1/2 where variance was computed across all trials for that 719	

image class (e.g. all presentations of all typical face images); this was identical to the d’ measure used 720	

in previous work for computing selectivity for faces versus non-face objects (Aparicio, Issa, & DiCarlo, 721	

2016; Ohayon, Freiwald, & Tsao, 2012). For example, for the main image set (Figure 2A), we 722	

compared all presentations of frontal face arrangements (8 images x 10 presentations/image = 80 total 723	

presentations) to all presentations of non-face arrangements (13 images x 10 presentations/image = 724	

130 total presentations) to compute the d’ values for each site in two time windows (60-90 ms and 100-725	

130 ms) as shown in Figure 3A. A positive d’ implies a stronger response to more naturally occurring 726	

frontal face arrangements of face parts while a negative d’ indicates a preference for unnatural non-727	

face arrangements of the face parts. 728	

 729	

Dynamical models 730	

Modeling framework and equations. To model the dynamics of neural response rates in a hierarchy, we 731	

start with the simplest possible model that might capture those dynamics: a model architecture 732	
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consisting of a hidden stage of processing containing two units that linearly converge onto a single 733	

output unit. We use this two-stage cascade for illustration of the basic concepts which can be easily 734	

extended to longer cascades with additional stages, and we ultimately used a three-stage version of the 735	

model to fit our neural data collected from three cortical stages (Figures 5B & 6). 736	

 An external input is applied separately to each hidden stage unit, which can be viewed as 737	

representing different features for downstream integration. We vary the connections between the two 738	

hidden units within the hidden processing stage (lateral connections) or between hidden and output 739	

stage units (feedforward and feedback connections) to instantiate different model families. The details 740	

of the different architectures specified by each model class can be visualized by their equivalent neural 741	

network diagrams (Figure 5). Here, we provide a basic description for each model tested. All two-stage 742	

models utilized a 2x2 feedforward identity matrix A that simply transfers inputs u (2x1) to hidden layer 743	

units x (2x1) and a 1x2 feedforward vector B that integrates hidden layer activations x into a single 744	

output unit y. 745	

 746	

          (1) 747	

 748	

By simply substituting in the appropriate unit vector and weight matrix transforming inputs from one 749	

layer to the next for the desired network architecture, this simple two-stage architecture can be 750	

extended to larger networks (e.g. see three-stage network diagrams in Figure 5B). To generate 751	

dynamics in the simple networks below, we assumed that neurons act as leaky integrators of their total 752	

synaptic input, a standard rate-based model of a neuron used in previous work (Seung, 1997),(Rao & 753	

Ballard, 1999). 754	

 755	

Pure feedforward. In the purely feedforward family, connections are exclusively from hidden to output 756	
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stages through feedforward matrices A and B. 757	

 758	

          (2) 759	

 760	

where t is the time constant of the leak current which can be seen as reflecting the biophysical 761	

limitations of neurons (a perfect integrator with large t would have almost no leak and hence infinite 762	

memory). 763	

 764	

Lateral inhibition. Lateral connections (matrix with off-diagonal terms) are included and are inhibitory. 765	

The scalar kl sets the relative strength of lateral inhibition versus bottom-up input. 766	

 767	

       (3) 768	

 769	

Normalization. An inhibitory term that scales with the summed activity of units within a stage is 770	

included. The scalar ks sets the relative strength of normalization versus bottom-up input. 771	

 772	

     (4) 773	

 774	

Normalization (nonlinear) (Carandini et al., 1997). The summed activity of units within a stage is used to 775	

nonlinearly scale shunting inhibition. 776	

 777	

      (5) 778	
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 779	

Note that this is technically a nonlinear dynamical system, and since the normalization term in equation 780	

(5) is not continuously differentiable, we used the fourth-order Taylor approximation around zero in the 781	

simulations of equation (5). 782	

 783	

Feedback (linear reconstruction). The feedback-based model is derived using a normative framework 784	

that performs optimal inference in the linear case (Seung, 1997) (unlike the networks in equations (2)-785	

(5) which are motivated from a mechanistic perspective but do not directly optimize a squared error 786	

performance loss). The feedback network minimizes the cost C of reconstructing the inputs of each 787	

stage (i.e. mean squared error of layer n predicting layer n-1). 788	

 789	

        (6) 790	

 791	

Differentiating this coding cost with respect to the encoding variables in each layer x, y yields: 792	

 793	

    (7)  794	

 795	

The cost function C can be minimized by descending these gradients over time to optimize the values 796	

of x and y: 797	

 798	

  799	

              (8) 800	
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  801	

 802	

The above dynamical equations are equivalent to a linear network with a connection matrix containing 803	

symmetric feedforward (B) and feedback (BT) weights between stages x and y as well as within-stage 804	

pooling followed by recurrent inhibition (-AATx and -BBTy) that resembles normalization. The property 805	

that symmetric connections minimize the cost function C generalizes to a feedforward network of any 806	

size or number of hidden processing stages (i.e. holds for arbitrary lower triangular network connection 807	

matrix). The final activation states (x,y) of the hierarchical generative network are optimal in the sense 808	

that the bottom-up activations (implemented through feedforward connections) are balanced by the top-809	

down expectations (implemented by feedback connections) which is equivalent to a Bayesian network 810	

combining bottom-up likelihoods with top-down priors to compute the maximum a posteriori (MAP) 811	

estimate. Here, the priors are embedded in the weight structure of the network. In simulations, we 812	

include an additional scalar ktd that sets the relative weighting of bottom-up versus top-down signals. 813	

 814	

       (9) 815	

 816	

Error signals computed in the feedback model. In equation (9), inference can be thought of as 817	

proceeding through integration of inputs on the dendrites of neuron population x. In this scenario, all 818	

computations are implicit in dendritic integration. Alternatively, the computations in equation (9) can be 819	

done in two steps where, in the first step, reconstruction errors are computed (i.e. e0 = u-ATx, e1 = x-820	

BTy) and explicitly represented in a separate error coding population. These error signals can then be 821	

integrated by their downstream target population to generate the requisite update to the state signal of 822	

neuron population x. 823	

 824	
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        (10) 825	

 826	

An advantage of this strategy is that the a state unit now directly receives errors as inputs, and those 827	

inputs allow implementation of an efficient Hebbian rule for learning weight matrices (Rao & Ballard, 828	

1999) -- the gradient rule for learning is simply a product of the state activation and the input error 829	

activation (weight updates obtained by differentiating equation (6) with respect to weight matrices A and 830	

B: DA = x•e0
T, DAT = e0•xT, DB = y•e1

T, and DBT = e1•y). Thus, the reconstruction errors serve as 831	

computational intermediates for both the gradients of online inference mediated by dendritic integration 832	

(dynamics in state space, equation (10)) and gradients for offline learning mediated by Hebbian 833	

plasticity (dynamics in weight space). 834	

 835	

 In order for the reconstruction errors at each layer to be scaled appropriately in the feedback 836	

model, we invoke an additional downstream variable z to predict activity at the top stage such that, 837	

instead of e2 = y which scales as a state variable, we have e2 = y-CTz (Figure 5A). This overall model 838	

reflects a state and error coding model as opposed to a state only model. 839	

 840	

Feedback (three-stage). For the simulations in Figures 6 and 8, three-stage versions of the above 841	

equations were used. These deeper networks were also wider such that they began with four input 842	

units (u) instead of only two inputs in the two-stage models. These inputs converged through 843	

successive processing stages (w,x,y) to one unit at the top node (z) (Figure 5B). 844	

 845	

Feedback (nonlinear reconstruction). To test the generality of our findings beyond a linear 846	

reconstruction cost, we simulated feedback-based models which optimized different candidate cost 847	

functions proposed for the ventral stream (Figure 7C). In nonlinear hierarchical inference, 848	
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reconstruction is performed using a monotonic nonlinearity with a threshold (th) and bias (bi): 849	

 850	

 ,  (11) 851	

 852	

  853	

              (12) 854	

  855	

 856	

Feedback (linear construction). Instead of a reconstruction cost where responses match the input (i.e. 857	

generative model) as in unsupervised learning, we additionally simulated the states and errors in a 858	

feedback network minimizing a linear construction cost where the network is producing responses to 859	

match a given output (i.e. discriminative model) similar to supervised learning: 860	

 861	

         (13) 862	

  863	

     (14) 864	

 865	

Model simulation. To simulate the dynamical systems in equations (2)-(14), a step input u was 866	

applied. This input was smoothed using a Gaussian kernel to approximate the lowpass nature of signal 867	

propagation in the series of processing stages from the retina to pIT: 868	

 869	

     (15) 870	
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 871	

where the elements of h are scaled Heaviside step functions. The input is thus a sigmoidal ramp whose 872	

latency to half height is set by t0 and rise time is set by s. For simulation of two-stage models, there 873	

were ten basic parameters: latency of the input t0, standard deviation of the Gaussian ramp σ, system 874	

time constant τ, input connection strength a, feedforward connection strength b, the four input values 875	

across two stimulus conditions (i.e. h11, h12, h21, h22), and a factor sc for scaling the final output to the 876	

neural activity. In the deeper three-stage network, there were a total of fifteen parameters which 877	

included an additional feedforward connection strength c and additional input values since the three-878	

stage model had four inputs instead of two. The lateral inhibition model class required one additional 879	

parameter kl as did the normalization model family ks, and for feedback model simulations, there was 880	

an additional feedback weight ktd to scale the relative contribution of the top-down errors in driving 881	

online inference. For the error coding variants of the feedback model, gain parameters c (two-stage) 882	

and d (three-stage) were included to scale the overall magnitude of the top level reconstruction error 883	

(also see Figure 5 for locations of parameters in network diagrams). 884	

 885	

Model parameter fits to neural data. In fitting the models to the observed neural dynamics, we 886	

mapped the summed activity in the hidden stage (w) to population averaged activity in pIT, and we 887	

mapped the summed activity in the output stage (y) to population averaged signals measured in aIT. To 888	

simulate error coding, we mapped the reconstruction errors e1 = w-BTx and e3 = y-CTz to activity in pIT 889	

and aIT, respectively. We applied a squaring nonlinearity to the model outputs as an approximation to 890	

rectification since recorded extracellular firing rates are non-negative (and linear rectification is not 891	

continuously differentiable). Analytically solving this system of dynamical equations (2)-(14) for a step 892	

input is precluded because of the higher order interaction terms (the roots of the determinant and hence 893	

the eigenvalues/eigenvectors of a 3x3 or larger matrix are not analytically determined, except for the 894	

purely feedforward model which only has first-order interactions), and in the case of the normalization 895	
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models, there is an additional nonlinear dependence on the shunt term. Thus, we relied on 896	

computational methods (constrained nonlinear optimization) to fit the parameters of the dynamical 897	

systems to the neural data with a quadratic (sum of squares) loss function. 898	

 899	

 Parameter values were fit in a two-step procedure. In the first step, we fit only the difference in 900	

response between image classes (differential mode which is the selectivity profile over time, see Figure 901	

6A, right data panel), and in the second step, we refined fits to capture an equally weighted average of 902	

the differential mode and the common mode (the common mode is the average across images of the 903	

response time course of visual drive). This two-step procedure was used to ensure that each model 904	

had the best chance of fitting the dynamics of selectivity (differential mode) as these selectivity profiles 905	

were the main phenomena of interest but were smaller in size (20% of response) compared to overall 906	

visual drive. In each step, fits were done using a large-scale algorithm (interior-point) to optimize 907	

coarsely, and the resulting solution was used as the initial condition for a medium-scale algorithm 908	

(sequential quadratic programming) for additional refinement. The lower and upper parameter bounds 909	

tested were: t0=[50 70], s=[0.5 25], t =[0.5 1000], kl,ks,ktd=[0 1], a,b,c,d=[0 2], h=[0 20], sc=[0 100], th=[-910	

20 20], and bi=[-1 1] which proved to be adequately liberal as parameter values converged to values 911	

that did not generally approach these boundaries. To avoid local minima, the algorithm was initialized to 912	

a number of randomly selected points (n = 50), and after fitting the differential mode, we took the top 913	

fits (n = 25) for each model class and used these as initializations in subsequent steps. The single best 914	

fitting instance of each model class is shown in the main figures. 915	

 916	

Model predictions. For the predictions in Figure 8, all architectural parameters obtained by the fitting 917	

procedure above were held fixed; only the pattern of inputs to the network was varied. For Figure 8A, 918	

to test the input integration properties of a model, we used the top-performing model and compared the 919	

response to all inputs presented simultaneously with the sum of the responses to each input alone. 920	
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 921	

 For Figure 8B, we approximated novel versus familiar images by parametrically varying the 922	

degree to which input patterns were random (inputs drawn from i.i.d. uniform distributions on the 923	

interval [0,1]) versus structured in a way that matched the weight pattern of the network. Here, we used 924	

a version of the model with two independent outputs reflecting detectors for two familiarized input 925	

patterns (output 1 tuned to pattern A: u1, u2, u3, u4 active and output 2 tuned to pattern 2: u5, u6, u7, u8 926	

active) (Figure 8B). Alternating between these two input patterns simulates alternation of two 927	

familiarized (learned) images as compared to purely random patterns (u1-8 independent and identically 928	

distributed). The first-to-second layer weights were [1,1,1,1,0,0,0,0] for pattern A and [0,0,0,0,1,1,1,1] 929	

for pattern B, so to parametrically vary the degree of correlation of inputs to this weight pattern from 930	

random (correlation = 0) to deterministic (correlation = 1), we drew input values from a joint distribution 931	

P(u1,u2,u3,u4,u5,u6,u7,u8) where u1-4 were drawn from a high-valued uniform distribution on the interval 932	

[1-e,1] and u5-8 were drawn from a low-valued uniform distribution [0, e] for stimulus pattern A and the 933	

opposite for pattern B (u5-8 high-valued and u1-4 low-valued). The parameter e determines the range of 934	

values that could be drawn from purely deterministic (0 or 1, e = 0) to randomly uniformly distributed 935	

(from 0 to 1, e = 1). Thus, the correlation of the inputs correspondingly varies according to r(ui,uj) 936	

= r(uk,ul) = (e-1)2/((e-1)2+e2/3) where 1<i,j<4, i≠j and 5<k,l<8, k≠l approaching correlation equal to 0 for a 937	

purely, random pattern (e = 1) that had a low probability of matching the learned patterns A and B. 938	

 939	

Code availability. All data analysis and computational modeling were done using custom scripts 940	

written in Matlab. All code is available upon request. 941	

 942	

Statistics. Error bars represent standard errors of the mean obtained by bootstrap resampling (n = 943	

1000). All statistical comparisons including those of means or correlation values were obtained by 944	
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bootstrap resampling (n = 1000) producing p-values at a resolution of 0.001 so that the lowest p-value 945	

that can be reported is p = 0.000 given the resolution of this statistical analysis. All statistical tests were 946	

two-sided unless otherwise specified. Spearman’s rank correlation coefficient was used. 947	

 948	
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 1154	
 1155	
Figure 1. Neural recordings and experimental design in face-selective subregions of the ventral 1156	
visual stream. (A) Neurons were recorded along the lateral convexity of the inferior temporal lobe 1157	
spanning the posterior to anterior extent of IT (+0 to +20 mm AP, Horsely-Clarke coordinates) in two 1158	
monkeys (data from monkey 1 are shown).  Based on prior work, face-selective sites (red) were 1159	
operationally defined as those with a response preference for images of frontal faces versus images of 1160	
non-face objects (see Methods). While these neurons were found throughout IT, they tended to be 1161	
found in clusters that mapped to previously identified subdivisions of IT (posterior, central, and anterior 1162	
IT) and corresponded to face-selective areas identified under fMRI in the same subjects (Issa & 1163	
DiCarlo, 2012)(Issa et al., 2013) (STS = superior temporal sulcus, IOS = inferior occipital sulcus, OTS = 1164	
occipitotemporal sulcus). (B) (top diagram) The three visual processing stages in IT lie downstream of 1165	
early visual areas V1, V2, and V4 in the ventral visual stream. (left) We designed our stimuli to focus on 1166	
the intermediate stage pIT by seeking images of faces and images of non-faces that would, on 1167	
average, drive equally strong initial responses in pIT. Novel images were generated from an exemplar 1168	
monkey face by positioning the face parts in different positions within the face outline. This procedure 1169	
generated both frontal face and non-face arrangements of the face parts, and we identified 21 images 1170	
(red and black boxes) that drove the mean, early (60-100 ms) pIT population response to >90% of its 1171	
response to the intact face (first image in red box is synthesized whole face; compare to the second 1172	
image which is the original whole face), and of these 21 images, 13 images contained non-face 1173	
arrangements of the face parts. For example, images with an eye centered in the outline (black box, 3rd 1174	
and 4th rows) as opposed to the lateralized position of the eye in a frontal face (red box) have a global 1175	
interpretation (“cyclops”) that is not consistent with a frontal face but still evoked strong pIT responses. 1176	
Selectivity of neural sites (see Figs. 3 & 4) for face versus non-face images was quantified using a d’ 1177	
measure. (middle) Computational hypotheses of cortical dynamics make differing predictions about how 1178	
neural selectivity in pIT may evolve following an initial, weak preference signal for images of frontal 1179	
faces. (right) Predictions of how aIT would behave as an output stage building selectivity for images of 1180	
frontal faces through multiple stages of processing. (C) A population decoder, trained on average firing 1181	
rates (60-200 ms post image onset, linear SVM classifier) for frontal face versus non-face 1182	
arrangements of the face parts in this image subset, performed poorly in pIT on held-out trials of the 1183	
same images (trial splits used so that the same images were shown in classifier training and testing). 1184	
However, the particular class (face vs non-face) could be determined at above chance levels when 1185	
reading the cIT and aIT population responses. 1186	
  1187	
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 1188	
 1189	
Figure 2. Responses in example sites to face-like images with typical and atypical face part 1190	
arrangements. The three sites with the highest selectivity in the late response phase in each region 1191	
are shown (pIT, cIT, and aIT; left, middle, and right columns, respectively) (d’ selectivity measured in a 1192	
100-130 ms window, gray shaded region shown in bottom, left panel). While the three aIT sites (right 1193	
column) demonstrated late phase selectivity for face images, the three pIT sites evolved the opposite 1194	
preference in their late phase (100-130 ms) responses (red line = mean response of 8 images shown in 1195	
Figure 1B red box, and black line = mean response of 13 images shown in Figure 1B black box).  1196	
  1197	
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Figure 3. Time course of neural response preferences in pIT, cIT, and aIT for images with face 1199	
versus non-face arrangements of the parts. (A) Preferences for frontal face versus non-face part 1200	
arrangements for each site are plotted in both early (60-90 ms post image onset) and late (100-130 ms) 1201	
time windows. Sites are grouped based on region (pIT, cIT, aIT) and whether they showed a significant 1202	
change in selectivity from early to late time windows (light gray = increased preference, black = 1203	
decreased preference, and dark gray = no change in preference for face versus non-face images, 1204	
significance tested at p < 0.01 level; example sites from Figure 2 are plotted using thicker, darker 1205	
lines). Many sites in pIT and cIT showed a decreasing preference for frontal face versus non-face 1206	
images over time (black lines, middle row, left and center panels). In contrast, no sites in aIT had this 1207	
dynamic (middle row, right panel). (B) The fraction of sites whose responses showed a preference for 1208	
images of typical, face-like arrangements of the face parts in pIT (blue), cIT (green) and aIT (red) in the 1209	
early (60-90 ms) and late (100-130 ms) phase of the response. Note that, in the late phase of the 1210	
response, most pIT neurons paradoxically showed a preference for non-face arrangements of face 1211	
parts. (C) Selectivity measured for images driving similar responses within a site. This procedure 1212	
ensured matched initial responses on a site-by-site basis rather than using a fixed set of images based 1213	
on the overall population response (i.e. the fixed image set of Figure 1B; here, the initial d’ for 60-90 1214	
ms is close to zero when images are selected site by site). Although initial response differences were 1215	
near zero when using site based image selection, a late phase preference for non-face images still 1216	
emerged in pIT and cIT but not in aIT similar to the decreasing selectivity profile observed when using a 1217	
fixed image set for all sites. 1218	
  1219	
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 1220	
 1221	
Figure 4. Individual monkey comparison and image controls for the decreasing selectivity 1222	
profile in pIT. (A) Preference for images with frontal face part arrangements analyzed separately for 1223	
each monkey. Median d’ of pIT sites in both early and late time windows is shown. (B) Preference for 1224	
images with face versus non-face arrangements of the parts was re-computed using image subsets 1225	
containing the same number of parts in the outline (the five 1-part and the three 4-part image subsets 1226	
shown at top; the larger 2-part subset contained 30 images and is not shown). (C) The 1-part image 1227	
subset was further tested at three different sizes (3o, 6o, and 12o). In all cases, pIT responses showed a 1228	
decreasing preference over time for typically-arranged face parts leading to a preference for atypically 1229	
arranged face parts in the later time window (100-130 ms). 1230	
	 	1231	
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 1232	
 1233	
Figure 5. Model diagrams. (A) Network diagrams of two-stage models used in Figure 7A,B. The base 1234	
feedforward architecture and parameters are shown in the first column while recurrent models with 1235	
added connections and parameters are shown in the remaining columns. All models have two inputs 1236	
(u1, u2), at least two hidden units (x1, x2) (a.k.a. layer 1 of the network), and at least one output unit (y). 1237	
For simulations, the inputs u1, u2 are set independently to simulate each hidden node receiving different 1238	
amounts of external drive, depending on the choice of the applied image relative to the unit’s preferred 1239	
image. The connection weights B = [b1, b2] transforming the hidden stage activations to the output unit 1240	
are modeled as the same (b1 = b2). All units have self-connections that determine the degree of leak 1241	
current set by the time constant t. In the normalization models, the leak term is additionally controlled 1242	
(linearly or nonlinearly) by the total activity in each stage (third and fourth columns). In the feedback-1243	
based model, the feedback connections are symmetric to the feedforward connections with weights BT 1244	
= [b1, b2]T, a column vector (fifth and sixth columns). The error coding feedback model (sixth column) 1245	
has an additional stage that contributes to computation of error in the second stage (see Methods for 1246	
details). (B) Extensions of the two-stage model architectures to three stages are shown only for the 1247	
feedforward and feedback models (compare to two-stage diagrams in (A)). The three-stage model has 1248	
an additional hidden processing stage compared to the two-stage model. An extra node is introduced at 1249	
the top of the hierarchy to produce an error signal in the third stage of the error coding model. 1250	
  1251	
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 1252	
 1253	
Figure 6. Computational modeling of neural dynamics in IT. (A) Three stage neural networks with 1254	
recurrent dynamics (network diagrams in top row; see Methods and Figure 5B) were constructed to 1255	
model neural signals measured in pIT, cIT, and aIT corresponding to the first (blue), second (green), 1256	
and third (red) model processing stages. All models received four inputs (gray) into four hidden stage 1257	
units (blue) which sent feedforward projections that converged onto two units in the next layer (green). 1258	
Besides this feedforward architecture, additional excitatory and inhibitory connections between units 1259	
were used to implement recurrent dynamics (self-connections reflecting leak currents are not shown 1260	
here for clarity; see Figure 5B for detailed diagrams). In the five models on the left, the responses of 1261	
the simulated neurons are assumed to code the current estimates of some set of features in the world 1262	
(a.k.a states), as is standard in most such networks. The best fit to the population averaged neural data 1263	
(far right) of the states of each model class are shown (first five columns). These state coding models 1264	
generally showed increasing selectivity over time from hidden to output layers and did not demonstrate 1265	
the strong decrease of stimulus preference in their hidden processing stage as observed in the pIT and 1266	
cIT neural population (blue and green lines). However, the neurons coding errors in a feedback-based 1267	
hierarchical model did show a strong decrease of stimulus preference in the hidden processing stage 1268	
(sixth column; reconstruction errors instead of the states were fit directly to the data). This model which 1269	
codes the error signals (filled circles) also codes the states (open circles) (network diagram in sixth 1270	
column of top row). Far right, population averaged neural selectivity profile for difference between 1271	
frontal face versus non-face arrangements (normalized by the mean population response to the whole 1272	
face) used in model fitting. (B) Goodness of fit of all three stage models tested to population averaged 1273	
selectivity profiles (dashed lines represent mean and standard error of reliability of neural data as 1274	
estimated by bootstrap resampling). 1275	
  1276	
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 1277	
 1278	
Figure 7. Two stage model fits to neural dynamics and comparison of variants of error coding 1279	
hierarchical models that use different algorithms for online inference. (A) We tested how well two 1280	
stage models could reproduce decreasing selectivity observed in the hidden layer (same format as 1281	
Figure 6A). The two stage error coding feedback model displayed similar dynamical phenomena as the 1282	
data suggesting that three stages of processing were not necessary to obtain error signal dynamics. (B) 1283	
Goodness of fit to population neural data (right plot in (A)) for all two stage models. (C) Existing forms 1284	
of error computing networks can be distinguished by the type of online inference algorithm that they 1285	
use. In one case, inference does not utilize top-down information between stages (classic error 1286	
backpropagation; between-stage feedback connections shown are not used in these networks during 1287	
runtime). On the other hand, between-stage feedback can be used such as in more general forms of 1288	
error backpropagation and predictive coding. We approximated these two extremes by including a 1289	
parameter (ktd, see Methods) controlling the relative weighting of bottom-up (feedforward) and top-1290	
down (feedback) evidence during online inference (first and second panels). We found that top-down 1291	
inference between stages was not necessary to produce the appropriate error signal dynamics, and ktd 1292	
was equal to zero in our best fitting two-layer and three-layers models (first panel is same model as 1293	
two-layer error coding model in (A)) although models with ktd ~ 1 also performed well (second panel). 1294	
Models can also differ in their goal (cost function) which directly impacts the error signals required 1295	
(equations in top row). Under a nonlinear reconstruction goal (emulating the nonlinear nature of spiking 1296	
output), the resulting error signals were still consistent with our data (third column). A simple sigmoidal 1297	
nonlinearity, however, did lead to additional details present in our neural data such as a rapid return of 1298	
stimulus preference to zero in the hidden layer. When we tested a discriminative, construction goal 1299	
more consistent with a supervised learning setting (e.g. classic error backpropagation) where bottom-1300	
up responses simply have to match a downstream target signal in classification tasks, we found that the 1301	
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errors of construction did not match the data as well as reconstruction errors (compare fourth column to 1302	
first three columns) although both types of error outperformed all state-based models and were overall 1303	
very similar (compare to (A)). 1304	
  1305	
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 1306	
 1307	
Figure 8. Comparison of neuronal phenomena to predictions of a feedback-based error coding 1308	
model. To generate model predictions, the architectural parameters of the model (i.e. connection 1309	
weights and time constants) were held fixed, and only the input patterns u were varied. (A) Neuronal 1310	
(left panel): in pIT, we found that the sum of the neuronal response to the face parts presented 1311	
individually (black) exceeded the response to the same parts presented simultaneously (i.e. a whole 1312	
face, red). Each line is the mean response of 33 pIT sites normalized by the peak response to the 1313	
whole face. Model (right panel): The magnitude of errors between stage 1 and stage 2 of the model 1314	
showed a similar degree of sublinear integration (responses were normalized by peak response to the 1315	
simultaneous input condition). (B) We extended the model to include two units in the third, output stage 1316	
that responded to two learned input patterns (see Methods) with increased separation of patterns A 1317	
and B in this high-level feature space (red markers in far right panel; 50 draws were made from 1318	
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distributions for A and B and were compared to pseudo-randomly drawn inputs, black markers). When 1319	
alternating the two learned or familiar patterns A and B, activations in the top layer of the networks 1320	
experienced greater changes than when two randomly selected patterns were alternated (compare 1321	
distances traversed in high-level feature space by red lines versus black lines, far right panel). Because 1322	
of this large change in high-level activations, transient errors were generated back through the network 1323	
for learned patterns. Strong oscillations could be observed in the error signals between stage 1 and 1324	
stage 2 of the model for alternated familiar inputs A and B (120 ms period) (red curve, middle right 1325	
panel). In contrast, alternating novel inputs with similar amplitude but with patterns not matching the 1326	
learned weights led to small amplitude oscillations in upstream error signals (black curve). Note that the 1327	
average response strength of state signals to novel and familiar inputs was matched at all network 1328	
levels by construction (mean-matched inputs). The differing response dynamics of error signals under 1329	
familiar versus novel patterns are qualitatively consistent with the IT findings for novel versus familiar 1330	
images (left, reproduced with permission from Figs. 1 & 2b of Meyer et al., 2014). (C) The average 1331	
response to the whole face for pIT sites recorded 0 to 1 mm below the pial surface (left panel; 1332	
superficial recordings, red curve) and for sites 1 to 2.5 mm beneath the pial surface (black curve). (right 1333	
panel) Average response of state units (red) and error units (black) in stage 1 of the model. Note the 1334	
lagged response in state units which is similar to the lagged response of units in superficial recordings 1335	
(red curve, left panel). 1336	
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