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ABSTRACT 17	
Hierarchical feedforward processing makes object identity explicit at the highest stages of the 18	
ventral visual stream. We leveraged this computational goal to study the fine-scale temporal 19	
dynamics of neural populations in posterior and anterior inferior temporal cortex (pIT, aIT) 20	
during face detection. As expected, we found that a neural spiking preference for natural over 21	
distorted face images was rapidly produced, first in pIT and then in aIT. Strikingly, in the next 30 22	
milliseconds of processing, this pattern of selectivity in pIT completely reversed, while selectivity 23	
in aIT remained unchanged. Although these dynamics were difficult to explain from a pure 24	
feedforward perspective, a model class computing errors through feedback closely matched the 25	
observed neural dynamics and parsimoniously explained a range of seemingly disparate IT 26	
neural response phenomena. This new perspective augments the standard model of online 27	
vision by suggesting that neural signals of states (e.g. likelihood of a face being present) are 28	
intermixed with the error signals found in deep hierarchical networks. 29	
 30	
 31	
INTRODUCTION 32	
 The primate ventral visual stream is a hierarchically organized set of cortical areas 33	
beginning with the primary visual cortex (V1) and culminating with explicit (i.e. linearly 34	
decodable) representations of objects in inferior temporal cortex (IT) (1) that quantitatively 35	
account for invariant object discrimination behavior (2). Consistent with a feedforward flow of 36	
processing from V1 to V2 to V4 to IT, neurons at higher cortical stages are more selective for 37	
object shape and identity while being more tolerant to changes in object size and position (3)(4). 38	
Formalizing object recognition as the result of a series of feedforward computations yields 39	
models that achieve impressive performance on basic object categorization tasks (5)(6) similar 40	
to the level of performance achieved by IT neural populations (7)(8). Importantly, these models 41	
are only optimized to solve invariant object recognition tasks and are not trained on neural data, 42	
yet their intermediate layers are highly predictive of time-averaged V4 and IT neural responses 43	
supporting the longstanding belief that the computational purpose of the ventral stream is to 44	
solve such tasks. Thus, the feedforward inference perspective provides a simple but powerful, 45	
first-order framework for studying core invariant object recognition (9). 46	
 47	
 However, visual object recognition behavior may not simply be the result of a single 48	
feedforward neural processing pass (a.k.a. feedforward inference), as evidenced by the 49	



observed dynamics of neural responses in IT (10)(11)(12)(13). From a theoretical perspective, 50	
feedback in a recurrent network might substantially improve online inference or support learning 51	
(14)(15). For example, inferring that a particular object is present in an image in the presence of 52	
local ambiguities (e.g. ambiguity due to noise, missing local information, or local information that 53	
is incongruent with the whole) can be achieved by integrating top-down with bottom-up 54	
information through feedback (16)(17)(18). Another possibility is that feedback from high level 55	
representations to lower level representations is used to drive changes of the synaptic weights 56	
of neural networks (i.e. learning) through unsupervised or supervised algorithms (e.g. error 57	
backpropagation) so as to improve future feedforward inference in performing tasks such as 58	
object recognition (19). These two possibilities are not mutually exclusive, and several 59	
computational models aim to integrate both in a natural way by building feedback pathways onto 60	
a feedforward architecture (see Fig. 7 and Discussion). 61	
 62	
 These architectures constitute a broad class of recurrent networks that all have an error 63	
computation which compares top-down predictions or targeted outputs against bottom-up inputs 64	
to compute gradients for driving sensory inference and learning (19)(20). Though the need for 65	
errors and subsequent gradient signals is theoretically well motivated, we do not know if such 66	
computations (e.g. error backpropagation and hierarchical Bayesian inference) are implemented 67	
in the brain. Currently, little conclusive neurophysiological evidence exists in support of these 68	
models. For example, while it has been suggested that end-stopped tuning of V1 cells is the 69	
result of feedback loops that “explain away” extended edges (21), this feedback-based 70	
interpretation cannot be disambiguated from standard alternative interpretations utilizing local 71	
mechanisms like lateral inhibition (which builds selectivity for shorter edges) (22) or 72	
normalization (which reduces responses to large stimuli such as extended edges) (23). Thus, 73	
these neural measurements taken from a single cortical area in which the mapping to a visual 74	
behavior is unclear, only weakly constrain computational models, and an open question is 75	
whether the dynamics of propagation of neural signals across stages of the visual hierarchy 76	
performs anything beyond feedforward inference. 77	
 78	
 Here, to disambiguate between the different types of inference that can be implemented in 79	
a hierarchy through feedforward, lateral, or feedback connections, we measured the temporal 80	
dynamics of neural signals across three stages of face processing in macaque IT. We found 81	
that many neurons in the intermediate processing stages reversed their initial preference – they 82	
rapidly switched from face preferring to anti-face preferring. Standard feedforward models 83	
including those employing local recurrences such as adaptation, lateral inhibition, and 84	
normalization could not fully capture the dynamics of face selectivity in our data. Instead, our 85	
modeling revealed that the reversals of face selectivity in intermediate processing stages are a 86	
natural dynamical signature of a family of hierarchical models that use feedback connections to 87	
implement “error coding.” We interpret this very good fit to our data as evidence that the ventral 88	
stream is implementing a model in this family. If correct, this model family informs us that we 89	
should not interpret neural spiking activity at each level of the ventral stream as only an explicit 90	
representation of the variables of interest (e.g. is a face present?) but should interpret much of 91	
spiking activity as representing the necessary layer-wise errors propagated across the 92	
hierarchy. In addition, we find that, without additional parameter modifications, the same error 93	
coding hierarchical model family explains seemingly disparate IT neural response phenomena, 94	
hence unifying our results with previous findings under a single computational framework. 95	
 96	
 97	
RESULTS 98	



Neural recordings were made across the posterior to anterior extent of IT in the left 99	
hemispheres of two monkeys (Fig. 1; example neurophysiological map in one monkey). 100	
Recording locations were accurately localized in vivo and co-registered across penetrations 101	
using a stereo microfocal x-ray system (~400 micron in vivo resolution)(24). The face versus 102	
non-face object selectivity of each site was measured using a standard screen image set, and 103	
neural maps of face versus non-face object selectivity were used to physiologically define 104	
subregions of IT containing an enrichment of face preferring sites (a.k.a. face patches) (25). 105	
Sites were assigned as belonging to a face-preferring cluster by their distance to the center, a 106	
purely spatial rather than functional criterion. The identified subregions were present in both 107	
monkeys and encompassed at least three hierarchical stages of face processing in posterior 108	
(pIT), central (cIT), and anterior (aIT) IT (Fig. 1). We asked how neural signals are transformed 109	
from the earliest (pIT) to the latest stage (aIT) of IT face processing. 110	
 111	
Images with typical versus atypical arrangements of face parts 112	
Converging lines of evidence from correlative and causal studies implicate the face patch 113	
subnetwork in face detection (25)(26). However, these studies relied on images testing general 114	
face versus non-face object discrimination (a.k.a. face detection) that can be solved using 115	
differences across multiple feature dimensions (local contrast, spatial frequency, and number of 116	
features). We sought images that would provide a more stringent test of the face subnetwork 117	
near the limits of its detection abilities. Specifically, if these regions are performing accurate face 118	
detection, they should specifically respond to the configuration of a face even when all other 119	
features are matched. Thus, we probed the face selectivity of IT with face-like images that only 120	
differed in the configuration of the face parts such that there could be conflicting local (parts) 121	
and global (configuration) evidence as to whether a face was truly present (Fig. 2a). For 122	
example, images with an eye presented in an unnatural, centered position have a very different 123	
global interpretation (“cyclops”) than when the eye is presented in its natural lateralized position 124	
in the outline even though these images have very similar local information (eye presented in an 125	
outline in the upper visual field) (see examples in Fig. 2a and Supplementary Fig. 1b). These 126	
images create an “aperture problem” because they are difficult to distinguish based on local 127	
information alone and must be disambiguated based on the surrounding context (27). This 128	
image set thus poses a more stringent challenge of face detection ability than standard screen 129	
sets which vary along many stimulus dimensions (i.e. faces vs bodies and non-face objects; see 130	
Fig. 1). Consistent with previous work showing that neurons in pIT can be driven by images like 131	
the ‘cyclops’ which contain information that is globally inconsistent with a face (28), we identified 132	
13 atypical face part configurations that drove neurons to produce an early response that was 133	
>90% of their response to a correctly configured whole face (Fig. 2a). Because these images 134	
drove a high feedforward response, we view them as being relatively well matched in their low-135	
level image properties and capable of activating additional processing in face responsive 136	
regions of IT. These images were comparable to whole faces from our screen set in driving 137	
responses with short latency (median latency: whole face=70.0 + 0.4 ms, typical arrangement of 138	
parts=69.5 + 0.5 ms, atypical arrangements of parts=70.0 + 0.5 ms, nimages=10, 8, and 13, 139	
respectively; p < 0.01 for atypical versus typical and atypical versus whole face, n=115 sites), 140	
and firing rates were comparable in strength to whole faces even over a broad analysis window 141	
(median normalized response over 50-200 ms: whole face exemplars=1.22 + 0.23, typical 142	
arrangement=1.36 + 0.04, atypical arrangements=1.37 + 0.03; p > 0.05 for all two-way 143	
comparisons, n=115 sites). Thus, building on the insight from previous work that pIT does not 144	
perform full face detection and is susceptible to the “aperture problem” even though it passes 145	
the basic face versus non-face object test, we constructed images that allowed us to ask how a 146	
difficult face detection task might be solved over time in pIT or if a solution is produced in 147	



downstream areas. 148	
 149	
Time course of responses in posterior, central, and anterior IT for images with typical 150	
versus atypical arrangements of face parts 151	
When we examined the dynamics of neural responses in pIT, we found that an unexpected 152	
preference for atypical arrangements of face parts emerged over time (see example sites in Fig. 153	
2b). Of the sites showing a significant change in their preference over time, a majority showed a 154	
decreasing preference over time for typical arrangements of face parts (43 of 51 sites or 84%; p 155	
< 0.01 criterion for significant change at the site level, n = 115 sites) (Fig. 2c). This surprising 156	
trend -- decreasing responses for images with typical as compared to atypical arrangements of 157	
face parts -- was strong enough that it reversed the small, initial preference for images of 158	
normally arranged face parts over the population (median d’: 60-90 ms = 0.11 + 0.02 vs. 100-159	
130 ms = -0.12 + 0.03, p < 0.01, n=115 sites), and this trend was observed in both monkeys 160	
when analyzed separately (p < 0.01, one-tailed test for decreased d’ between 60-90 ms and 161	
100-130 ms in both monkeys, nM1 = 43, nM2 = 72 sites; Fig. 3a). Even at the individual site level, 162	
a complete and rapid reversal of the expected selectivity profile of face neurons could be 163	
observed (33 of 51 sites changed from face preferring to non-face preferring and only 3 of 51 164	
sites changed to face preferring after being non-face preferring) (Fig. 4a, left). As a result, the 165	
majority of pIT sites responded more strongly to atypical images over typical images in the late 166	
response phase (prefer typical arrangement: 60-90 ms = 66% vs. 100-130 ms = 34%; p < 0.01, 167	
n = 115) (Fig. 4b, light green bars). 168	
 169	
 In the anterior face-selective regions of IT which are furthest downstream of pIT and 170	
reflect additional stages of feedforward processing (see block diagram in Fig. 1), we did not 171	
observe these strong reversals in selectivity profile -- 98% of sites (39 of 40) did not change 172	
their relative preference for typical vs. atypical face features (p<0.01 criterion for significant 173	
change at the site level). Rather, we observed a stable selectivity profile over time in aIT 174	
(median d’: 60-90 ms = 0.13 + 0.03 vs. 100-130 ms = 0.17 + 0.03, p > 0.05, n=40 sites) with a 175	
slight but gradual accumulation (increasing preference for normal arrangements of the face 176	
parts) rather than a reversal of preference (Fig. 4a, right). As a result, the majority of anterior 177	
sites preferred images with typical arrangement of the face parts in the late phase of the 178	
response (prefer typical: 60-90 ms = 78% of sites vs. 100-130 ms = 78% of sites; p > 0.05, n = 179	
40 sites) despite only a minority of upstream sites in pIT preferring these images in their late 180	
response (Fig. 4b, black bars). This suggests that spiking responses of individual aIT sites 181	
resolve images as expected from a computational system whose purpose is to detect faces, as 182	
previously suggested (29). Finally, in cIT whose anatomical location is intermediate to PIT and 183	
AIT, we observed a selectivity profile over time that was intermediate to that of pIT and aIT 184	
consistent with its position in the ventral visual hierarchy (Fig. 4a,b, dark green). The very 185	
different patterns of dynamics in pIT, cIT, and aIT neurons are surprising given the intuition that 186	
in a feedforward network selectivity for the preferred stimulus class is maintained or built 187	
contrary to the complete reversal of rank-order selectivity observed in the lower stages but not 188	
the highest stage of IT. 189	
 190	
Controls for low-level image variation and for overall activity 191	
To validate our findings against potential confounding factors, we checked the robustness of our 192	
surprising observation that preference for typical over atypical arrangements of face parts 193	
reverses in pIT. Since the number of parts varied between the two image classes tested, we 194	
recomputed selectivity using only images with the same number of parts thus limiting 195	
differences in the contrast, spatial frequency and retinal position of energy in the image (see 196	



examples in Fig. 3b). We found that pIT face selectivity was still consistently reversed across 197	
subsets of images containing a matched number of one, two, or four parts (n=5, 30, and 3 198	
images, respectively). Here, we quantify reversals as a decrease in d’ from the early (60-90 ms 199	
post-image onset) to the late (100-130 ms post-image onset) response phase where a negative 200	
d’ indicates a preference for atypical face part arrangements (see SI Methods). For all three 201	
image subsets controlling the number of face parts to be one, two, or four, d’ began positive on 202	
average (i.e. preferring typical face part arrangements) (median d’ for 60-90 ms = 0.13 + 0.05, 203	
0.05 + 0.02, 0.33 + 0.09 for one, two, and four parts) and significantly decreased in the next 204	
phase of the response becoming negative on average (median d’ for 100-130 ms: -0.27 + 0.06, 205	
-0.14 + 0.02, -0.04 + 0.12; p < 0.01 for d’ comparisons between 60-90 ms and 100-130 ms, n = 206	
115, 115, 76 sites) (Fig. 3b,). A similar reversal in face selectivity was observed when we re-207	
tested single part images at smaller (3o) and larger (12o) image sizes suggesting a dependence 208	
on the relative configuration of the parts and not on their absolute retinal location or absolute 209	
retinal size (median d’ for 60-90 ms vs. 100-130 ms: three degrees = 0.51 + 0.09 vs. -0.29 + 210	
0.14, twelve degrees = 0.07 + 0.14 vs. -0.11 + 0.14; n = 15; p < 0.01 for three degree condition 211	
only) (Fig. 3c). 212	
 213	
 We also tested the hypothesis that absolute initial firing rates, which were not perfectly 214	
matched, were somehow responsible for producing the pIT image preference reversal. We 215	
found no support for this hypothesis -- the observed change in firing rate over time (ΔpIT=rpIT late - 216	
rpIT early) was weakly correlated with the strength of the initial response (ρpIT early,ΔpIT = -0.24 + 217	
0.15, p = 0.044, n = 20 images; for these firing rate controls, the original whole face image drove 218	
a much higher response than the synthetic images we created, and being a firing rate outlier, 219	
we excluded this image). Instead, firing rate changes over time were strongly correlated with the 220	
class (typical versus atypical) of the image (ρclass,ΔpIT = -0.77 + 0.04, p < 0.01, n = 20 images). In 221	
other words, responses to images with normally arranged face parts were specifically weaker by 222	
18% on average in the next phase of the response (Δrate (60-90 vs 100-130 ms) = -18% + 4%, 223	
p < 0.01; n = 7 images), but responses to images with unnatural arrangements of face parts, 224	
which also drove high initial responses, did not experience any firing rate reduction in the next 225	
phase of the response (Δrate (60-90 vs 100-130 ms) = 2 + 1%, p > 0.05; n = 13 images). This 226	
dependence on the image class and not on initial response strength argues against 227	
explanations such as rate-driven adaptation that solely depend on a unit’s activity to explain 228	
decreasing neural responses over time. Indeed, we found that the late phase firing rates in PIT 229	
could not be predicted from early phase pIT firing rates (ρpIT early, pIT late = 0.07 + 0.17, p > 0.05; n 230	
= 20 images). In contrast, we found that pIT late phase firing rates were better predicted by 231	
early phase firing rates in downstream regions cIT and aIT (ρcIT early, pIT late = -0.52 + 0.11, p < 232	
0.01; ρaIT early, pIT late = -0.36 + 0.14, p = 0.012; npIT=115, ncIT=70, naIT=40 sites). That is, for images 233	
that produced high early phase responses in cIT and aIT, the following later phase responses of 234	
units in the lower level area (pIT) tended to be low, consistent with the hypothesis that feedback 235	
from those areas is producing the pIT selectivity reversals. Finally, the relative speed of 236	
selectivity reversals in pIT (~30 ms peak-to-peak) makes explanations based on fixational eye 237	
movements or shifts in attention (e.g. from behavioral surprise to unnatural arrangements of 238	
face parts) unlikely as saccades and attention shifts occur on slower timescales (hundreds of 239	
milliseconds) (30). 240	
 241	
Computational models of neural dynamics in IT 242	
Given the above observations of a non-trivial, dynamic selectivity reversal during face detection, 243	
we next proceeded to build formal models of gradually increasing complexity to determine the 244	



minimal set of assumptions that could capture our empirical findings. We used a linear 245	
dynamical systems modeling framework to evaluate dynamics in different hierarchical 246	
architectures (Supplementary Fig. 1 a,b and see SI Methods). A core principle of feedforward 247	
ventral stream models is that object selectivity is built by feature integration from one cortical 248	
area to the next cortical area in the hierarchy leading to low dimensional representations at the 249	
top of the hierarchy. Here, we take the simplest feature integration architecture where a unit in a 250	
downstream area linearly sums the input from units in an upstream area to produce greater 251	
downstream selectivity than any upstream input alone. This generic encoding model 252	
conceptualizes the idea that different types of evidence, local (i.e. parts) and global (i.e. 253	
arrangement of parts), have to converge and be integrated to separate face from non-face 254	
images in our image set. Dimensionality reduction as performed in this network is a key 255	
computation specified by most network architectures whether unsupervised (i.e. autoencoder) 256	
or supervised (i.e. backprop) allowing these networks to learn an abstracted, low dimensional 257	
representation from the high-dimensional input layer. Here, we performed dimensionality 258	
reduction in linear networks as monotonic nonlinearities can be readily accommodated in our 259	
framework (14)(21). First, we focused on two stage models to use the simplest configuration 260	
possible and gain intuition since stacks of two processing stages can be used to generate a 261	
hierarchical system of any depth. In this framing, the activity of the unit in the output stage 262	
corresponds to aIT which integrates activity from units in the deepest hidden stage measured 263	
corresponding to pIT (Figure 4, top row, first five models, and Supplementary Fig. 1 a,b) 264	
bearing in mind that aIT is actually a hidden stage of processing with respect to the next 265	
processing stage in the larger cortical stack. When an external step input is applied to such a 266	
system, it will of course produce a (lagging) step response in each of the two stages. We here 267	
sought to determine how adding recurrent connectivity to this basic feedforward architecture 268	
could generate internal dynamics beyond those simple dynamics, and to compare those 269	
dynamics with the observed IT neural dynamics. 270	
 271	
 Based on previous ideas in the literature, we considered lateral inhibition within a stage, 272	
normalization within a stage (23), and cortico-cortical feedback (14). Adding recurrent lateral 273	
inhibitory connections leads to competition within a stage which can limit responses over time to 274	
a strong driving stimulus but not to weaker stimuli. Similarly, normalization scales down 275	
responses over time to strong driving stimuli and can be implemented by a leak term that scales 276	
adaptation (the degree of decay in the response) and is controlled recursively by the summed 277	
activity of the network (23). Besides lateral connections and normalization within a processing 278	
stage, feedback connections between stages are a remaining available mechanism for driving 279	
dynamics. To constrain our choice of a feedback-based model, we took a normative approach 280	
minimizing a quadratic reconstruction cost between stages. While there are many possible 281	
layer-wise cost functions to consider (i.e. input to output mappings to optimize), we minimized a 282	
classical reconstruction cost as this term is at the core of an array of hierarchical generative 283	
models including hierarchical Bayesian inference (31), Boltzmann machines (32), analysis-by-284	
synthesis networks (14), sparse coding (20), predictive coding (21), and autoencoders in 285	
general (33). Optimizing a quadratic loss results in feedforward and feedback connections that 286	
are symmetric -- reducing the number of free parameters -- such that inference on the 287	
represented variables at any intermediate stage is influenced by both bottom-up sensory 288	
evidence and current top-down interpretations. Critically, a common feature of this large model 289	
family is the computation of between-stage error signals via feedback which is distinct from 290	
state-estimating model classes (i.e. feedforward models) that do not compute or propagate 291	
errors (see Figure 7 for a comparison of state and error estimating model classes). A dynamical 292	
implementation of such a network uses leaky integration of error signals which, as shared 293	



computational intermediates, guide gradient descent of the values of the represented variables 294	
(∆activity of each neuron => inference) to a previously learned target value or descend the 295	
connection weights (∆synaptic strengths => learning) to values that give the best behavior, here 296	
defined as a reconstruction goal (similar results were found using other goals and networks; 297	
Supplementary Fig. 2). 298	
 299	
 When we fit each of the models to our neural data, they were all able to produce an 300	
increase in selectivity from the first stage of the network to the second stage of the network. 301	
This increase is not surprising because all models had converging feedforward connections 302	
from the first to second stages (Figure 5a, first five columns, compare green and black curves). 303	
However, we found that neither the lateral inhibition model, nor the normalization model, could 304	
capture the observed selectivity reversal phenomenon in pIT. Instead, the selectivity of these 305	
models simply increased to a saturation level set by the leak term (shunting inhibition) in the 306	
system (Figure 5a, first five columns). Similar behavior was present when we tried a nonlinear 307	
implementation of the normalization model that more powerfully modulated shunting inhibition 308	
(23). That the normalization models performed poorly can be explained by the fact that 309	
responses to a strong stimulus even when normalized can meet but not fall below those to a 310	
stimulus that was initially weak. Thus, a complete reversal in stimulus preference on average 311	
across a population of cells (i.e. Figures 2-4, PIT data) is not possible when only using 312	
normalization mediated by surround suppression. 313	
 314	
 In contrast to the above models, we found that the feedback model capable of computing 315	
hierarchical error signals naturally displayed a strong reversal of selectivity in a sub-component 316	
of its first processing stage -- qualitatively similar behavior to the selectivity reversal that we 317	
observed in many pIT neural sites. Specifically, this model showed reversal dynamics in the 318	
magnitude of its reconstruction error signals but not in its state signals (the states of the world 319	
inferred by the model) (Figure 5a, compare fifth and sixth columns). These error signals 320	
integrate converging state signals from two stages -- one above and one below (see SI 321	
Methods). The term “error” is thus meaningful in the hidden processing stages where state 322	
signals from two stages can converge. The top nodes of a hierarchy receive little descending 323	
input and hence do not carry additional errors with respect to the desired computation; rather, 324	
top node errors closely approximate the feedforward-driven state estimates (put another way, 325	
top stages drive the formation of errors below). This behavior in the higher processing stages is 326	
consistent with our observation of explicit representation of faces in aIT in all phases of the 327	
response (Fig. 4) and with similar observations of decodable identity signals by others in all 328	
phases of aIT responses for faces (34) and objects (1)(2). 329	
 330	
 Finally, we asked whether our results generalized to larger networks of increasing depth. 331	
We found similar results for three layer versions of the models described above. Specifically, the 332	
dynamics of error signals in a three-layer model produced a good match to our data collected 333	
from three successive cortical areas (Fig. 5a, seventh column), while state signals in three layer 334	
model networks did not produce the observed IT face selectivity dynamics (Fig. 5b, right set of 335	
bars).  336	
 337	
Predictions of an error coding hierarchical model 338	
While our neural observations at multiple stages of the IT hierarchy led us to the error coding 339	
hierarchical model above, a stronger test of the idea of error coding is whether it predicts other 340	
IT neural phenomena. To identify stimulus regimes that would lead to insightful predictions, we 341	
asked in what way would the behavior of error-estimating hierarchical models differ most from 342	



the behavior of generic feedforward state-estimating models. Because our feedback-based 343	
model uses feedforward inference at its core, it behaves similarly to a state-estimating 344	
hierarchical feedforward model when the statistics of inputs match the learned feedforward 345	
weight pattern of the network (i.e. ‘natural’ images drawn from everyday objects and scenes) 346	
since in these settings feedforward inferences derived from the sensory data are aligned with 347	
top-down expectations. Thus, predictions of feedback-based models that could distinguish them 348	
from feedforward-only models are produced when the natural statistics of images are altered so 349	
that they differ from the feedforward patterns previously learned by the network. We have 350	
(above) considered one such type of alteration: images where local face features are present 351	
but altered from their naturally occurring (i.e. statistically most likely) arrangement. Next, we 352	
tested two other image manipulations from recent physiology studies which yielded novel neural 353	
phenomena that lacked a principled, model-based explanation (35)(13). To test whether the 354	
error coding hierarchical model family displays these behaviors, we fixed the architectural 355	
parameters derived from our fitting procedure in Figure 5 and simply varied the input to this 356	
network, specifically the correlation between inputs and the network’s weight pattern, in order to 357	
match the nature of the image manipulations performed in prior experiments. 358	
 359	
Sublinear integration of the face features. In face-selective areas in pIT and cIT, the sum of the 360	
responses to the face parts exceeds the response to the whole face (35)(28), and this behavior 361	
increases from linear to more sublinear over the timecourse of the response (ratio of sum of 362	
responses to parts vs. response to whole: 60-90 ms = 1.5 + 0.1, 100-130 ms = 4.6 + 0.3; p < 363	
0.01, n = 33 sites) (Fig. 6a, left panel). This result runs counter to what would be expected in a 364	
model where selectivity for the whole face is built from the conjunction of the parts. In such a 365	
model, the response to the whole face would be at least as large if not greater (superlinear) than 366	
the summed responses to the individual features. To test whether an error coding model 367	
exhibited the phenomenon of sublinear feature integration, we compared the response with all 368	
inputs active (co-occurring features) to the sum of the responses when each input was activated 369	
independently (individual features). The reconstruction errors in our feedback-based model 370	
showed a strong degree of sublinear integration of the inputs such that the response to the 371	
simultaneous inputs (whole) was much smaller than what would be predicted by a linear sum of 372	
the responses to each input alone (parts), and the model’s sublinear integration behavior 373	
qualitatively replicated the time course observed in pIT without any additional fitting of 374	
parameters (Fig. 6a, right panel). 375	
 376	
Evolution of neural signals across time. Neural responses to familiar images are known to 377	
rapidly attenuate in IT when compared to responses to novel images (36)(37)(38). This 378	
observation seems to contradict what would be predicted by simple Hebbian potentiation for 379	
more exposed stimuli. Furthermore, familiar images show much sharper temporal dynamics 380	
than responses to novel images when presented repeatedly (13). These qualitatively different 381	
dynamics for familiar versus novel images are surprising given that stimuli are drawn from the 382	
same distribution of natural images and are thus matched in their image-level statistical 383	
properties (color, spatial frequency, contrast). To test whether our network displayed these 384	
different dynamical behaviors, we simulated familiar inputs as those that match the learned 385	
weight pattern of a high-level detector and novel inputs as those with the same overall input 386	
level but with weak correlation to the learned network weights (here, we have extended the 387	
network to include two units in the output stage corresponding to storage of the two familiarized 388	
input patterns to be alternated; conceptually, we consider these familiar pattern detectors as 389	
existing downstream of IT in a region such as perirhinal cortex which has been shown to code 390	
familiarized image statistics and memory-based object signals (39)). We repeatedly alternated 391	



two familiar inputs or two novel inputs and found that model responses in the hidden processing 392	
stage were temporally sharper for familiar inputs that matched the learned weight patterns 393	
compared to novel, unlearned patterns of input, consistent with the previously observed 394	
phenomenon (Fig. 6b; data reproduced with permission from Meyer et al., 2014 (13)). Model 395	
responses reproduced additional details of the neural dynamics including a large initial peak 396	
followed by smaller peaks for responses to novel inputs and a phase delay in the oscillations of 397	
responses to novel inputs compared to familiar inputs. Intuitively, these dynamics are composed 398	
of two phases. After the initial response transient, familiar patterns lead to lower errors and 399	
hence lower neural responses than random patterns (see Fig. 6b, red curve drops below the 400	
blue curve after the onset response), similar to the observed weaker response to more familiar 401	
face-like images present in our data (Fig. 2d). When the familiar pattern A is switched to 402	
another familiar pattern B, this induces a short-term error in adjusting to the new pattern (Fig. 403	
6b, red curve briefly goes above the blue curve during pattern switch and then decreases). 404	
Because unfamiliar patterns are closer together in the high-level encoding space than two 405	
learned patterns (Fig. 6b, top right panel), the switch between two learned patterns introduces 406	
more shift in top-down signals and hence greater change in error signals. This result 407	
demonstrates that our model, derived from fitting only the first 70 ms (60-130 ms post image 408	
onset) of IT responses to face images, can extend to much longer timescales and may 409	
generalize to studies of images besides face images. 410	
 411	
Dynamical properties of neurons across cortical lamina 412	
In the large family of state-error coding hierarchical networks, a number of different cortical 413	
circuits are possible (Fig. 7). A key distinction of two such circuit mapping hypotheses 414	
(predictive coding versus error backpropagation) is the expected laminar location of state coding 415	
neurons. Specifically, predictive coding asserts that superficial layers contain error units and 416	
that errors are projected forward to the next cortical level (21)(40)(41) as opposed to typical 417	
neural network implementations where the feedforward projecting neurons in superficial lamina 418	
are presumed to encode estimates about states of the visual world (e.g. is a face present or 419	
not?). State and error signals can be distinguished by their dynamical signatures in our leading 420	
model, which was fit on error signals but produces predictions of the corresponding state signals 421	
underlying the generation of errors. Since state units are integrators (see SI Methods), they 422	
have slower dynamics than error units leading to longer response latencies and a milder decay 423	
in responses (Fig. 6a, right panel). To test this prediction, we localized our recordings relative to 424	
the cortical mantle by co-registering the x-ray determined locations of our electrode (~400 425	
micron in vivo accuracy) to structural MRI data (see SI Methods). When we separated units into 426	
those at superficial depths closer to the pial surface (1/3 of our sites; corresponds to 427	
approximately 0 to 1 mm in depth) versus those in the deeper layers (remaining 2/3 of sites, ~1 428	
to 2.5 mm in depth), we found a longer latency and less response decay in superficial units 429	
consistent with the expected profile of state units (Fig. 6a, left panel). Importantly, the latency 430	
difference between cortical lamina within pIT (deep vs superficial: 66.0 + 1.7 vs 76.0 + 1.7 ms, p 431	
< 0.01) was greater than the conduction delay from pIT to cIT (i.e. from superficial layers of pIT 432	
to the deeper layers of cIT) (superficial pIT vs deep cIT: 76.0 + 1.7 vs 75.5 + 2.1 ms, p > 0.05) 433	
even though the distance traveled between cortical stages pIT and cIT is larger than laminar 434	
distances within pIT. Thus, instead of a simple conduction delay accounting for latency 435	
differences across lamina, our model suggests that temporal integration of inputs, consistent 436	
with the behavior of state units implemented in standard feature coding rather than predictive 437	
coding schemes, may drive the lagged dynamical properties of neurons in superficial lamina. 438	
 439	
  440	



 441	
DISCUSSION 442	
We have measured neural responses during a difficult face detection task across the IT 443	
hierarchy and demonstrated that the initial feedforward preference for faces in the intermediate 444	
(a.k.a hidden) processing stages reverses over time – that is, after the initial wave of face-445	
selective neural responses, responses at lower levels of the hierarchy (pIT and cIT) rapidly 446	
evolve to not prefer typical face part arrangements. This behavior was inconsistent with a pure 447	
feedforward model, even when we included strong nonlinearities in these models, such as 448	
normalization. However, we showed that augmenting the feedforward model so that it 449	
represents the errors generated during hierarchical processing produced the observed neural 450	
dynamics (Fig. 5). This view argues that a fraction of cortical neurons codes error signals. Using 451	
this new modeling perspective, we went on to generate a series of predictions consistent with 452	
observed IT neural phenomena (Fig. 6). Importantly, this perspective provides an alternative 453	
interpretation to prior suggestions that IT neurons are not tuned for typical faces but are instead 454	
tuned for atypical faces (35). Under the present hypothesis, some IT neurons are preferentially 455	
tuned to typical arrangements of face features, and many other IT neurons are involved in 456	
coding errors with respect to those typical arrangements. We believe that these intermixed state 457	
estimating and error coding neuron populations are both sampled in standard neural recordings 458	
of IT, even though only state estimating neurons are truly reflective of the tuning preferences of 459	
that IT processing stage. 460	
 461	
 The precise fractional contribution of errors to neural activity is difficult to estimate from 462	
our data. Under the primary image condition tested, not all sites significantly decreased their 463	
selectivity (~60%). We currently interpret these sites as coding state (feature) estimates (Fig. 464	
2c, gray and black dots), and we did observe evidence of emergence of state-like signals in our 465	
superficial neural recordings (Fig. 6c). Alternatively, at least some of the non-reversing sites 466	
might be found to code errors under other image conditions than the one that we tested. 467	
Furthermore, while in our primary image condition selectivity reversals only accounted for 20% 468	
of the overall spiking modulation (Fig. 2d), we found larger modulations in late phase neural 469	
firing (50-100%) under other image conditions tested (Fig. 6 a,b). At a computational level, the 470	
absolute contribution of error signals to spiking may not be the critical factor as even a small 471	
relative contribution may have important consequences in the network. 472	
 473	
Error signals generated across different hierarchical inference and learning models 474	
The notion of error is inherent to many existing models in the literature that go beyond the basic 475	
feedforward, feature estimation class. These models use errors for guiding top-down inference 476	
by computing errors implicitly (hierarchical Bayesian inference (14)(31); Fig. 7, second row) or 477	
by representing errors explicitly (predictive coding (21); Fig. 7, third and last row). Alternatively, 478	
errors can be used specifically for unsupervised learning (autoencoder (33); Fig. 7, fourth row) 479	
or specifically for supervised learning (classic error backpropagation (19); Fig. 7, fifth row). 480	
Finally, recent models incorporate aspects of both inference and learning (42)(43) (Fig. 7; 481	
bottom two rows). A key, unifying feature across inference and learning models is the need to 482	
compute an error signal between processing stages. This error signal can be in the form of a 483	
generative, reconstruction cost (stage n predicting stage n-1) or a discriminative, construction 484	
cost (stage n-1 predicting stage n). Regardless, this across-stage “performance” error term is 485	
used in all models, is typically the only term combining signals from different model layers, and 486	
is distinct from within-stage “regularization” terms (i.e. sparseness or weight decay) in driving 487	
network behavior. The present study provides evidence that such errors are not only computed, 488	
but that they are explicitly encoded in spiking rates. To test the robustness of this claim across 489	



different model implementations, we tested models with different performance errors 490	
(reconstruction, nonlinear reconstruction, and discriminative) and found similar population level 491	
error signals across these networks (Supplementary Fig. 2). Thus, errors as broadly construed 492	
in the state-error coding hierarchical model family provide a good approximation to IT population 493	
neural dynamics, and future work examining the specifics of error signals and interactions 494	
between error and state units at the single-neuron level may distinguish among the various 495	
computational algorithms which depend on error signals for their implementation. 496	
 497	
Comparison to previous neurophysiology studies in the ventral stream 498	
Prior work in IT has shown that responses of face-selective cells are stronger for atypical faces 499	
than for typical faces and are stronger when the parts are presented individually than when 500	
presented together in a whole face (35)(28). One possible interpretation of these data is that IT 501	
neurons are not tuned for faces but are instead tuned for atypical face features (i.e. extreme 502	
feature tuning) (35); however, our data suggest an alternative interpretation of this finding and, 503	
more deeply, an extended computational purpose of IT dynamics. In that prior work, the 504	
response preference of each neuron was determined by averaging over a long time window 505	
(~200 ms). By looking more closely at the fine time scale dynamics of the IT response, we 506	
suggest that this same “extreme coding” phenomenon can instead be interpreted as a natural 507	
consequence of networks that have an actual tuning preference for typical faces (as evidenced 508	
by an initial response preference for typical faces in pIT, cIT, and aIT; Fig. 4b) but that also 509	
compute error signals with respect to that preference. The hierarchical error coding framework 510	
proposed here provides a single, unifying account of many other reliable but previously 511	
unexplained phenomena in IT: sublinear integration of multiple inputs (35)(28) (Fig. 6a), tuning 512	
for extreme features in faces (35) (Fig. 2; positional shifts of the eye position correspond to 513	
extremes of the face space used in Freiwald et al., 2009), tuning for novel stimuli over familiar 514	
stimuli (36)(38)(37) (Fig. 6b, response to first presentation is larger for the novel inputs), and 515	
rapid response dynamics for familiar over novel images (13) (Fig. 6b, larger oscillation 516	
amplitude to repeated presentation of familiar inputs). Thus, we have provided a parsimonious 517	
framework that can account for these disparate neural phenomena by naturally extending the 518	
purely feedforward model in a way suggested by prior computational work. The perspective that 519	
many IT neurons code error signals reflecting deviations from the naturally learned statistics of 520	
images suggests that natural joint statistics of features will lead to suppressed responses on 521	
average in the hidden processing stages. This perspective may extend across the ventral visual 522	
stream including V1 where there is causal evidence of a suppressive role for feedback in 523	
producing end-stopping (44), and it has been suggested that end-stopping is the result of error-524	
like computations (21). 525	
 526	
Computational utility of coding errors in addition to states 527	
In error-computing networks, errors provide control signals for guiding learning giving these 528	
networks additional adaptive power over basic feature estimation networks. This property helps 529	
augment the classical, feature coding view of neurons which, with only feature activations and 530	
Hebbian operations, does not lead to efficient gradient descent and may provide insight into 531	
how more intelligent unsupervised and supervised learning algorithms such as backpropagation 532	
could be plausibly implemented in the brain. A potentially important contribution of this work is 533	
the suggestion that gradient descent algorithms are facilitated by using an error code so that 534	
efficient learning is reduced to a simple Hebbian operation at synapses and efficient inference is 535	
simply integration of inputs at the cell body. This representational choice, to code the 536	
computational primitives of gradient descent in spiking activity, simply leverages existing neural 537	
machinery for inference and learning. 538	



 539	
 While we provide evidence that IT hidden units code error signals, the precise 540	
computational use of those error signals remains to be empirically determined. The most likely 541	
downstream, causal impact of error signals could be in online inference (updating neural firing 542	
rates), offline inference (updating synaptic weights, a.k.a. learning), or both. We expect that 543	
optimizing the weights and optimizing the states (feature estimates) are both implemented in 544	
cortical circuits as there is a large body of evidence on inference and learning in cortex including 545	
work in IT showing unsupervised learning of novel images within a few hundred presentations 546	
(37)(38)(45), work in IT showing neural changes after visual discrimination training (46), and 547	
work in IT showing that neural responses evolve over short timescales to produce improved 548	
estimates online (10)(11)(47). If both online and offline optimization mechanisms are used, their 549	
impact on the animal’s behavioral output could ground their relative importance. Conversely, the 550	
animal’s engagement in a task may guide the computation of error signals, through addition of a 551	
top-down supervision term as in classical error backpropagation, for improved performance 552	
under a new behavioral goal. As new tools become available to specifically disrupt cortico-553	
cortical feedback, they can be brought to bear on these key questions in hierarchical cortical 554	
computation. 555	
 556	
 557	
MATERIALS & METHODS 558	
 559	
Animals and surgery. All surgery, behavioral training, imaging, and neurophysiological 560	
techniques are identical to those described in detail in our previous work28. Two rhesus 561	
macaque monkeys (Macaca mulatta) weighing 6 kg (Monkey 1, female) and 7 kg (Monkey 2, 562	
male) were used. A surgery using sterile technique was performed to implant a plastic fMRI 563	
compatible headpost prior to behavioral training and scanning. Following scanning, a second 564	
surgery was performed to implant a plastic chamber positioned to allow targeting of 565	
physiological recordings to posterior, middle, and anterior face patches in both animals. All 566	
procedures were performed in compliance with National Institutes of Health guidelines and the 567	
standards of the MIT Committee on Animal Care and the American Physiological Society. 568	
 569	
Behavioral training and image presentation. Subjects were trained to passively fixate a 570	
central white fixation dot during serial visual presentation of images at a natural saccade-driven 571	
rate (one image every 200 ms). Although a 4o fixation window was enforced, subjects generally 572	
fixated a much smaller region of the image (<1o)28. Images were presented at a size of 6o except 573	
for control tests at 3o and 12o sizes (Fig. 3c), and all images were presented for 100 ms duration 574	
with 100 ms gap (background gray screen) between each image. Up to 15 images were 575	
presented during a single fixation trial, and the first image presentation in each trial was 576	
discarded from later analyses. Five repetitions of each image in the general screen set were 577	
presented, and ten repetitions of each image were collected for all other image sets. The screen 578	
set consisted of a total of 40 images drawn from four categories (faces, bodies, objects, and 579	
places; 10 exemplars each) and was used to derive a measure of face versus nonface object 580	
selectivity. Following the screen set testing, some sites were tested using an image set 581	
containing images of face parts presented in different combinations and positions. We first 582	
segmented the face parts (eye, nose, mouth) from a monkey face image. These parts were then 583	
blended using a Gaussian window, and the face outline was filled with pink noise to create a 584	
continuous background texture. A face part could appear on the outline at any one of nine 585	
positions on an evenly spaced 3x3 grid. Although the number of possible images is large (49 = 586	
262,144 images), we chose a subset of these images for testing neural sites (n=82 images). 587	



Specifically, we tested the following images: the original whole face image, the noise-filled 588	
outline, the whole face reconstructed by blending the four face parts with the outline, all possible 589	
single part images where the eye, nose, or mouth could be at one of nine positions on the 590	
outline (n=3x9=27 images), all two part images containing a nose, mouth, left eye, or right eye 591	
at the correct outline-centered position and an eye tested at all remaining positions (n=4*8-592	
1=31images), all two part images containing a correctly positioned contralateral eye while 593	
placing the nose or mouth at all other positions (n=2*8-2=14 images), and all correctly 594	
configured faces but with one or two parts missing (n=3+4=7 images). The particular two-part 595	
combinations tested were motivated by prior work demonstrating the importance of the eye in 596	
early face processing28, and we sought to determine how the position of the eye relative to the 597	
outline and other face parts was encoded in neural responses. The three and four part 598	
combinations were designed to manipulate the presence or absence of a face part for testing 599	
the integration of face parts, and in these images, we did not vary the positions of the parts from 600	
those in a naturally occurring face. In a follow-up test on a subset of sites, we permuted the 601	
position of the four face parts under the constraint that they still formed the configuration of a 602	
naturally occurring face (i.e. preserve the ‘T’ configuration, n=10 images; Fig. 3b). We tested 603	
single part images at 3o and 12o sizes in a subset of sites (n=27 images at each size; Fig. 3c). 604	
Finally, we measured the responses to the individual face parts in the absence of the outline 605	
(n=4 images; Fig. 6a). 606	
 607	
MR Imaging and neurophysiological recordings. Both structural and functional MRI scans 608	
were collected in each monkey. Putative face patches were identified in fMRI maps of face 609	
versus object selectivity in each subject. A stereo microfocal x-ray system24 was used to guide 610	
electrode penetrations in and around the fMRI defined face-selective subregions of IT. X-ray 611	
based electrode localization was critical for making laminar assignments since electrode 612	
penetrations are often not perpendicular to the cortical lamina when taking a doral-ventral 613	
approach to IT face patches. Laminar assignments of recordings were made by co-registering x-614	
ray determined electrode coordinates to MRI where the pial-to-gray matter border and the gray-615	
to-white matter border were defined; based on our prior work estimating sources of error (e.g. 616	
error from electrode tip localization and brain movement), registration of electrode tip locations 617	
to MRI brain volumes has a total of <400 micron error which is sufficient to distinguish deep 618	
from superficial layers48. Multi-unit activity (MUA) was systematically recorded at 300 micron 619	
intervals starting from penetration of the superior temporal sulcus such that all sites were tested 620	
with a screen set containing both faces and nonface objects, and a subset of sites that were 621	
visually driven were further tested with our main image set manipulating the position of face 622	
parts. Although we did not record single-unit activity, our previous work showed similar 623	
responses between single-units and multi-units on images of the type presented here28, and our 624	
results are consistent with observations in previous single-unit work in IT35. Recordings were 625	
made from PL, ML, and AM in the left hemisphere of monkeys 1 and 2 and from AL in monkey 626	
2. AM and AL are pooled together in our analyses forming the aIT sample. 627	
 628	
Neural data analysis. The face patches were physiologically defined in the same manner as in 629	
our previous study28. Briefly, we fit a graded 3D sphere model (linear profile of selectivity that 630	
rises from a baseline value toward the maximum at the center of the sphere) to the spatial 631	
profile of face versus nonface object selectivity across our sites. We tested spherical regions 632	
with radii from 1.5 to 10 mm and center positions within a 5 mm radius of the fMRI-based 633	
centers of the face patches. The resulting physiologically defined regions were 1.5 to 3 mm in 634	
diameter. Sites which passed a visual response screen (mean response in a 60-160 ms window 635	
>2*SEM above baseline for at least one of the four categories in the screen set) were included 636	



in further analysis. All firing rates were baseline subtracted using the activity in a 25-50 ms 637	
window following image onset averaged across all repetitions of an image. Finally, given that 638	
the visual response latencies in monkey 2 were on average 13 ms slower than those in monkey 639	
1, we applied a single latency correction (13 ms shift to align monkey 1 and monkey 2’s data) 640	
prior to averaging across monkeys. This was done to so as not to wash out any fine timescale 641	
dynamics by averaging though similar results were obtained without using this latency 642	
correction, and this single absolute adjustment was more straightforward than the site-by-site 643	
adjustment used in our previous work (similar results were obtained using this alternative 644	
latency correction)28. The observed selectivity dynamics (Fig. 2) were found in each monkey 645	
analyzed separately (Fig. 3a). Images that produced an average population response > 0.9 of 646	
the initial response (60-100 ms) to a face-like image were analyzed further (Figs. 2-4). In follow-647	
up analyses, we specifically limited comparison to images with the same number of parts (Fig. 648	
3b). For example, for single part images, we used the image with the eye in the upper, 649	
contralateral region of the outline as a reference and found that four other images of the 27 650	
single-part images elicited a response at least as large as 90% of the response to this standard 651	
image. For images containing all four face parts, we used the whole face as the standard and 652	
found nonface-like arrangements of the four face parts that drove at least 90% of the early 653	
response to the whole face (2 images out of 10 tested). Individual site d’ measures were 654	
computed using d’ = (u1- u2)/(var1+var2)/2)1/2 where variance was computed across all trials for 655	
that image class (i.e. all presentations of all typical face images). A positive d’ implies a stronger 656	
response to more naturally occurring (typical) arrangements of face parts while a negative d’ 657	
indicates a preference for unnatural (atypical) arrangements of the face parts. 658	
 659	
Dynamical models 660	
Modeling framework and equations. To model the dynamics of neural response rates in a 661	
hierarchy, we started with the simplest possible model that might capture those dynamics: we 662	
used a model architecture consisting of a hidden stage of processing containing two units that 663	
linearly converged onto a single output unit. An external input was applied separately to each 664	
hidden stage unit, which can be viewed as representing different features for downstream 665	
integration. We varied the connections between the two hidden units within the hidden 666	
processing stage (lateral connections) or between hidden and output stage units (feedforward 667	
and feedback connections) to instantiate different model families. The details of the different 668	
architectures specified by each model class can be visualized by their equivalent neural network 669	
diagrams and connection matrices (Supplementary Fig. 1). Here, we provide a basic 670	
description for each model tested. All models utilize a 2x2 feedforward identity matrix A that 671	
simply transfers inputs u (2x1) to hidden layer units x (2x1) and a 1x2 feedforward matrix B that 672	
integrates hidden layer activations x into a single output unit y. 673	
 674	

         (1) 675	
 676	
To generate dynamics in the simple networks below, we assumed that neurons act as leaky 677	
integrators of their total synaptic input, a standard rate-based model of a neuron used in 678	
previous work14,21. 679	
 680	
Pure feedforward. In the purely feedforward family, connections were exclusively from hidden to 681	
output stages through feedforward matrices A and B. 682	
 683	



          (2) 684	
 685	
where τ is the time constant of the leak current which can be seen as reflecting the biophysical 686	
limitations of neurons (a perfect integrator with large τ would have almost no leak and hence 687	
infinite memory). 688	
 689	
Lateral inhibition. Lateral connections (matrix with off-diagonal terms) are included and are 690	
inhibitory. The scalar kl sets the relative strength of lateral inhibition versus bottom-up input. 691	
 692	

       (3) 693	
 694	
Normalization. An inhibitory term that scales with the summed activity of units within a stage is 695	
included. The scalar ks sets the relative strength of normalization versus bottom-up input. 696	
 697	

     (4) 698	
 699	
Normalization (nonlinear)23. The summed activity of units within a stage is used to nonlinearly 700	
scale shunting inhibition. 701	
 702	

      (5) 703	
 704	
Since the normalization term in equation (5) is not continuously differentiable, we used the 705	
fourth-order Taylor approximation around zero in the simulations of equation (5). 706	
 707	
Feedback (linear reconstruction). The feedback-based model is derived using a normative 708	
framework that performs optimal inference in the linear case14 (unlike the networks in equations 709	
(2)-(5) which are motivated from a mechanistic perspective but do not directly optimize a 710	
squared error performance loss). The feedback network minimizes the cost C of reconstructing 711	
the inputs of each stage (i.e. mean squared error of layer n predicting layer n-1). 712	
 713	

        (6) 714	
 715	
Differentiating this coding cost with respect to the encoding variables in each layer x, y yields: 716	
 717	

    (7)  718	
 719	
The cost function C can be minimized by descending these gradients over time to optimize the 720	
values of x and y: 721	
 722	

  723	
              (8) 724	



  725	
 726	
The above dynamical equations are equivalent to a linear network with a connection matrix 727	
containing symmetric feedforward (B) and feedback (BT) weights between stages x and y as 728	
well as within-stage pooling followed by recurrent inhibition (-AATx and -BBTy) that resembles 729	
normalization. The property that symmetric connections minimize the cost function C 730	
generalizes to a feedforward network of any size or number of hidden processing stages (i.e. 731	
holds for arbitrary lower triangular connection matrix B). The final activation states (x,y) of the 732	
hierarchical generative network are optimal in the sense that the bottom-up activations 733	
(implemented through feedforward connections) are balanced by the top-down expectations 734	
(implemented by feedback connections) which is equivalent to a Bayesian network combining 735	
bottom-up likelihoods with top-down priors to compute the maximum a posteriori (MAP) 736	
estimate. Here, the priors are embedded in the weight structure of the network. In simulations, 737	
we include an additional scalar ktd that sets the relative weighting of bottom-up versus top-down 738	
signals. 739	
 740	
       (9) 741	
 742	
Error signals computed in the feedback model. In equation (9), inference can be thought of as 743	
proceeding through integration of inputs on the dendrites of neuron population x. In this 744	
scenario, all computations are implicit in dendritic integration. Alternatively, the computations in 745	
equation (9) can be done in two steps where, in the first step, reconstruction errors are 746	
computed (i.e. e0=u-ATx, e1=x-BTy) and explicitly represented in a separate error coding 747	
population. These error signals can then be integrated to generate the requisite update to the 748	
state signal of neuron population x. 749	
 750	
        (10) 751	
 752	
An advantage of this strategy is that there are now only two input populations to a state unit, 753	
and those inputs allow implementation of an efficient Hebbian rule for learning weight matrices21 754	
-- the gradient rule for learning is simply a product of the state activation and the input error 755	
activation (weight updates obtained by differentiating equation (6) with respect to weight 756	
matrices A and B: ΔA = x•e0

T, ΔAT = e0•xT, ΔB = y•e1
T, and ΔBT = e1•y). Thus, the reconstruction 757	

errors serve as computational intermediates for both the gradients of online inference (dynamics 758	
in state space, equation (10)) and gradients for offline learning (dynamics in weight space). 759	
 760	
 In order for the reconstruction errors at each layer to be scaled appropriately in the 761	
feedback model, we invoke an additional downstream variable z to predict activity at the top 762	
layer such that, instead of e2=y which scales as a state variable, we have e2=y-CTz 763	
(Supplementary Fig. 1a). This overall model reflects a state and error coding model as 764	
opposed to a state only model. A third, less plausible possibility is to only represent error signals 765	
explicitly (a.k.a. pure predictive coding; Fig. 7 (iii)). In other words, the linear dynamical system 766	
in equation (8) can be rewritten through a linear change of variables to include error variables 767	
only, and the state variables become implicitly represented during dendritic integration of these 768	
errors. 769	
 770	
Feedback (three-stage). For the simulations in Figs. 5,6, a three-stage version of the above 771	



models was used. These deeper network were also wider such that they began with four input 772	
units (u) instead of only two inputs in the two-stage models. These inputs converged through 773	
successive processing stages (w,x,y) to one unit at the top node (z) (Supplementary Fig. 1b). 774	
 775	
Feedback (nonlinear reconstruction). We tested versions of feedback-based models that 776	
optimized different cost functions other than a linear reconstruction cost (Supplementary Fig. 777	
2). In nonlinear hierarchical inference, reconstruction is performed using a monotonic 778	
nonlinearity with a threshold (th) and bias (bi): 779	
 780	
 781	

 ,  (11) 782	
 783	
  784	
              (12) 785	
  786	
 787	
Feedback (linear construction). Instead of a reconstruction cost, we additionally simulated the 788	
states and errors in a feedback network minimizing a linear construction cost: 789	
 790	

         (13) 791	
  792	
     (14) 793	
 794	
Model simulation. To simulate the dynamical systems in equations (2)-(14), a step input u was 795	
applied. This input was smoothed using a Gaussian kernel to approximate the lowpass nature of 796	
signal propagation in the series of processing stages from the retina to pIT: 797	
 798	

     (15) 799	
 800	
where the elements of h are scaled Heaviside step functions. The input is thus a sigmoidal ramp 801	
whose latency to half height is set by t0 and rise time is set by σ. For simulation of two-stage 802	
models, there were ten basic parameters: latency of the input t0, standard deviation of the 803	
Gaussian ramp σ, system time constant τ, input connection strength A, feedforward connection 804	
strength B, the four input values across two stimulus conditions (i.e. h11, h12, h21, h22), and a 805	
factor sc for scaling the final output to the neural activity. In the deeper three-stage network, 806	
there were a total of fifteen parameters which included an additional feedforward connection 807	
strength C and additional input values since the three-stage model had four inputs instead of 808	
two. The lateral inhibition model class required one additional parameter kl  as did the 809	
normalization model family ks, and for feedback model simulations, there was an additional 810	
feedback weight ktd to scale the relative contribution of the top-down errors in driving online 811	
inference. For the error coding variants of the feedback model, gain parameters C (two-stage) 812	
and D (three-stage) were included to scale the overall magnitude of the top level reconstruction 813	
error. 814	
 815	



Model parameter fits to neural data. In fitting the models to the observed neural dynamics, we 816	
mapped the summed activity in the hidden stage (x) to population averaged activity in pIT, and 817	
we mapped the summed activity in the output stage (y) to population averaged signals 818	
measured in aIT. To simulate error coding, we mapped the reconstruction errors e1=x-BTy and 819	
e2=y-CTz to activity in pIT and aIT, respectively. We applied a squaring nonlinearity to the model 820	
outputs as an approximation to rectification since recorded extracellular firing rates are non-821	
negative (and linear rectification is not continuously differentiable). Analytically solving this 822	
system of dynamical equations (2)-(14) for a step input is precluded because of the higher order 823	
interaction terms (the roots of the determinant and hence the eigenvalues/eigenvectors of a 3x3 824	
matrix are not analytically determined, except for the purely feedforward model which only has 825	
first-order interactions), and in the case of the normalization models, there is an additional 826	
nonlinear dependence on the shunt term. Thus, we relied on computational methods 827	
(constrained nonlinear optimization) to fit the parameters of the dynamical systems to the neural 828	
data with a quadratic (sum of squares) loss function. 829	
 830	
 Parameter values were fit in a two step procedure. In the first step, we fit only the 831	
difference in response between image classes (differential mode which is the selectivity profile 832	
over time, see Fig. 5b, left panel), and in the second step, we refined fits to capture an equally 833	
weighted average of the differential mode and the common mode (the common mode is the 834	
average across images of the response time course of visual drive). This two-step procedure 835	
was used to ensure that each model had the best chance of fitting the dynamics of selectivity 836	
(differential mode) as these selectivity profiles were the main phenomena of interest but were 837	
smaller in size (20% of response) compared to overall visual drive. In each step, fits were done 838	
using a large-scale algorithm (interior-point) to optimize coarsely, and the resulting solution was 839	
used as the initial condition for a medium-scale algorithm (sequential quadratic programming) 840	
for additional refinement. The lower and upper parameter bounds tested were: t0=[50 70], σ=[0.5 841	
25], τ =[0.5 1000], kl,ks,ktd=[0 1], A,B,C,D=[0 2], h=[0 20], sc=[0 100], th=[-20 20], and bi=[-1 1] 842	
which proved to be adequately liberal as parameter values converged to values that did not 843	
generally approach these boundaries. To avoid local minima, the algorithm was initialized to a 844	
number of randomly selected points (n=50), and after fitting the differential mode, we took the 845	
top fits (n=25) for each model class and used these as initializations in subsequent steps. The 846	
single best fitting instance of each model class is shown in the main figures. 847	
 848	
Model predictions. For the predictions in Fig. 6, all architectural parameters obtained by the 849	
fitting procedure above were held fixed; only the pattern of inputs to the network was varied. For 850	
Fig. 6a, to test the input integration properties of a model, we used the top-performing model 851	
(most optimal solution) and compared the response to all inputs presented simultaneously with 852	
the sum of the responses to each input alone. 853	
 854	
 For Fig. 6b, we approximated novel versus familiar images as random patterns versus 855	
structured input patterns that matched the learned weights of the network. Here, we used a 856	
version of the model with two independent outputs reflecting detectors for two familiarized input 857	
patterns (output 1 tuned to pattern A: u1, u2, u3, u4 active and output 2 tuned to pattern 2: u5, u6, 858	
u7, u8 active) (Fig. 6b). Alternating between these two input patterns simulates alternation of two 859	
familiarized (learned) images as compared to purely random patterns (u1-8 independent and 860	
identically distributed). To parametrically vary the degree of correlation of inputs to the learned 861	
weight patterns from random (correlation = 0) to deterministic (correlation = 1), we drew input 862	
values from a joint distribution P(u1,u2,u3,u4,u5,u6,u7,u8) where u1-4 were drawn from a high-863	



valued uniform distribution on the interval [1-ε,1] and u5-8 were drawn from a low-valued uniform 864	
distribution [0, ε] for stimulus pattern A and the opposite for pattern B (u5-8 high-valued and u1-4 865	
low-valued). The parameter ε determines the range of values that could be drawn from purely 866	
deterministic (0 or 1) to randomly uniformly distributed (from 0 to 1). Thus, the correlation of the 867	
inputs correspondingly varies according to ρ(ui,uj)= ρ(uk,ul)=(ε-1)2/((ε-1)2+ε2/3) where 1<i,j<4, i≠j 868	
and 5<k,l<8, k≠l approaching correlation equal to 0 for a purely, random pattern (ε=1) that had a 869	
low probability of matching the learned patterns A and B. 870	
 871	
Code availability. All data analysis and computational modeling were done using custom 872	
scripts written in Matlab. All code is available upon request. 873	
 874	
Statistics. Error bars represent standard errors of the mean obtained by bootstrap resampling 875	
(n = 1000). All statistical comparisons including those of means or correlation values were 876	
based on 99% confidence intervals obtained by bootstrap resampling (n = 1000). All statistical 877	
tests were two-sided unless otherwise specified. Spearman’s rank correlation coefficient was 878	
used. 879	
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Figure 1  Neurophysiological recordings of face-selective subregions in the ventral visual stream. The ventral 
visual stream is a series of hierarchically connected areas (diagram in top row) and includes at least three IT 
processing stages (blue box). Neurons in these three stages were recorded along the lateral convexity of the 
inferior temporal lobe spanning the posterior to anterior extent of IT (+0 to +20 mm AP, Horsely-Clarke 
coordinates) in two monkeys (data from monkey 1 are shown). “Face neuron” sites (red) were operationally 
defined as those with a response preference for images of faces versus images of nonface objects (see SI 
Methods). While these were found throughout IT, they tended to be found in clusters that mapped to 
previously identified subdivisions of IT (posterior, central, and anterior IT) and also corresponded to face-
selective areas identified under fMRI in the same subject (28)(48) (STS=superior temporal sulcus, IOS=inferior 
occipital sulcus, OTS=occipitotemporal sulcus). 
  



 
 
 
Figure 2  Responses in posterior IT to face-like images with typical and atypical face part arrangements. (a) 
Novel images were generated from an exemplar monkey face by positioning the face parts in different 
positions within the face outline. This procedure generated both typical (red) and atypical (black) arrangements 
of the face parts, and images that drove >90% of the early (60-100 ms) response to the whole face at the 
population level are shown here (first image in red box is synthesized whole face; compare to the second 
image which is the original whole face). (b) Responses of three example sites. Preference for images with 
atypical arrangements (black line = mean responses of 13 images shown in (a)) over images with typical 
arrangements (red lines; 8 images) emerged late in the neural response (gray box). (c) Preference for typical 
versus atypical arrangements of individual sites in early (60-90 ms) and late (100-130 ms, same as gray box in 
(b)) time windows (sites showing significant changes in their preference (p<0.01) are plotted with error bars 
and colored according to whether their preference (d’) for typical vs. atypical face images increased (black), 
decreased (green), or did not change (gray); the three example sites from (b) all had decreasing preference 
and are highlighted by the green outlines; the marginal distributions are shown where inverted triangles are the 
median d’ in early and late time windows). (d) Population average response in pIT across all images from (a) 
with typical or atypical arrangements for the whole recorded population (top) and for the sites showing 
significantly decreased preference for typical versus atypical arrangements (bottom) (same sites as green dots 
in (c)). 
  



 
 
 
Figure 3  Individual monkey comparison and image controls for the reversal of rank-order selectivity in pIT. (a) 
Preference for images with typical versus atypical face part arrangements analyzed separately for each 
monkey. Median d’ across sites in both early and late time windows is shown. (b) Preference for images with 
typical versus atypical face part arrangements was re-computed using image subsets containing the same 
number of parts in the outline (the five 1-part and the three 4-part image subsets shown at top; the larger 2-part 
subset contained 30 images total and is not shown). (c) The 1-part image subset was further tested at three 
different sizes (3o, 6o, and 12o). In all cases, pIT responses showed an initial preference for typically-arranged 
face parts, followed by a later preference for atypically arranged face parts. 
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Figure 4  Time course of neural response preferences in posterior, central, and anterior IT for images with 
typical versus atypical face part arrangements. (a) The initial preference (d’) in pIT for typical face part 
arrangements reversed in many sites following the first 30 ms of the response (left panel; sites in green 
showed significant decreases in selectivity (p<0.01); same color scheme as Fig. 2c). In aIT, selectivity for face-
like arrangements of parts generally increased over time (right panel) (sites plotted in order of absolute change 
in preference; sites with largest absolute change in preference are in foreground). (b) Left: Population average 
response to typical versus atypical arrangements (left, normalized by the mean response of the population to 
the whole face). Right: The fraction of sites whose responses showed a preference for images of typical, face-
like arrangements of the face parts (right) in pIT (green), cIT (dark green) and aIT (black) in the early (60-90 
ms) and late (100-130 ms) phase of the response. Note that, in the late phase of the response, most pIT 
neurons paradoxically show a preference for atypical arrangements of face parts. 
  

50 100
−1

0

1

50 100
-1

0

1

Time re: image onset (ms)

d’

n=115 n=70
CITPIT

Pr
ef

er
 ty

pi
ca

l a
rra

ng
em

en
ts

(fr
ac

tio
n 

of
 s

ite
s)

50 100

−0.1

0.1

0.2

Time re: image onset (ms)

Ty
pi

ca
l -

 a
ty

pi
ca

l
(fr

ac
tio

n 
of

 w
ho

le
 fa

ce
 re

sp
on

se
)

PIT (n=115)
CIT (n=70)

Figure 4
a

b

Increase (p<0.01)
No change (p>0.01)
Decrease (p<0.01)

50 100
-1

0

1 n=40
AIT

prefer
atypical

prefer
typical

AIT (n=40)

0

0.5

1

PIT CIT AIT

ea
rly

la
te

ea
rly

la
te

ea
rly

la
te



 
 
 
Figure 5  Computational modeling of neural dynamics in IT. (a) Simple two-layer neural networks (first six 
columns) with recurrent dynamics (network diagrams in top row; see SI Methods and Supplementary Fig. 1 
a,b) were constructed to model neural signals measured in pIT and aIT corresponding to the first (green) and 
second (black) model processing stages. All models received two inputs (gray) into two hidden stage units 
(green) which sent feedforward projections that converged onto a single unit in the output stage (black). 
Besides this feedforward architecture, additional excitatory and inhibitory connections between units were used 
to implement recurrent dynamics (self connections reflecting leak currents are not shown here for clarity; see 
Supplementary Fig. 1a for detailed diagrams). In the five models on the left, the responses of the simulated 
neurons are assumed to code the current estimates of some set of features in the world (a.k.a states), as is 
standard in most such networks. The best fit to the population averaged neural data in (b) (same as left panel 
in Fig. 4b) of the states of each model class are shown (first five columns). These state coding models showed 
increasing selectivity over time from hidden to output layers and did not demonstrate the strong reversal of 
stimulus preference in their hidden processing stage (green lines) as observed in the pIT neural population. 
However, the neurons coding errors in a feedback-based hierarchical model did show a strong reversal of 
stimulus preference in the hidden processing stage (sixth column; reconstruction errors instead of the states 
were fit directly to the data). This model which codes the error signals (filled circles) also codes the states 
(open circles) (network diagram in sixth column of top row). A three-layer version of this model also produced 
reversal dynamics in the hidden layers (seventh column). (b) Population averaged neural selectivity profile 
shown (left, same as left panel in Fig. 4b). (right) Goodness of fit of all two-layer and three-layer models tested 
(dashed lines represent mean and standard error of reliability of neural data as estimated by bootstrap 
resampling).  
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Figure 6  Comparison of neuronal findings and predictions of a feedback-based error coding model. To 
generate model predictions, the architectural parameters of the model (i.e. connection weights and time 
constants) were held fixed, and only the input patterns u were varied. (a) Neuronal (left panel): in pIT, we found 
that the sum of the neuronal response to the face parts presented individually (blue) exceeded the response to 
the same parts presented simultaneously (i.e. a whole face, red). Each line is the mean response of 33 pIT 
sites normalized by the peak response to the whole face. Model (right panel): The magnitude of errors between 
stage 1 and stage 2 of the model showed a similar degree of sublinear integration (responses are normalized 
by peak response to the simultaneous input condition). (b) We extended the model to include two units in the 
third, output stage that responded to two learned input patterns (see SI Methods), increasing separation of 
patterns A and B in this high-level feature space (red markers in far right panel; 50 draws were made from 
distributions for A and B and were compared to relatively arbitrary inputs, blue markers). When alternating the 
two learned or familiar patterns A and B, activations in the top layer of the networks experienced greater 
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changes than when two randomly selected patterns were alternated (compare distances traversed in high-level 
feature space by red lines versus blue lines, far right panel). Because of this large change in high-level 
activations, transient errors were generated back through the network for learned patterns. Strong oscillations 
could be observed in the error signals between stage 1 and stage 2 of the model for alternated familiar inputs 
A and B (120 ms period) (red curve, middle right panel). In contrast, alternating novel inputs with similar 
amplitude but with patterns not matching the learned weights led to small amplitude oscillations in upstream 
error signals (blue curve). Note that the average response strength of state signals to novel and familiar inputs 
was matched at all network levels by construction. The differing response dynamics of error signals under 
familiar versus novel patterns are qualitatively consistent with the IT findings for novel versus familiar images 
(left, reproduced with permission from Figs. 1 & 2b of Meyer et al., 2014). (c) The average response to the 
whole face for pIT sites recorded 0 to 1 mm below the pial surface (left panel; superficial recordings, blue 
curve) and for sites 1 to 2.5 mm beneath the pial surface (red curve). (right panel) Average response of state 
units (blue) and error units (red) in stage 1 of the model. Note the lagged response in state units which is 
similar to the lagged response of units in superficial recordings (red curve, left panel). 
  



 
 
 
Figure 7  Summary of hierarchical model families. (a) Neural network models can be divided based on the 
computations that they perform (left table) and how they instantiate those computations through neurons and 
their connectivity (right two tables). (i): All model families shown build from the basic feedforward hierarchical 
model family to include either top-down inference, unsupervised learning, or supervised learning ((*) indicates 
that feedforward models can in some cases include local, within-stage recurrent connections such as the 
normalization models tested in Fig. 5). (ii): In hierarchical Bayesian inference (14)(31), feature estimates (i.e. 
inferred states of variables in the world) are communicated between processing stages to combine bottom-up 
estimates and top-down predictions. (iii): In a fully predictive code, neural spiking encodes the residual errors 
instead of directly encoding the feature estimates. This coding strategy amounts to a simple change of 
variables (see SI Methods) and is energy efficient in that the transmitted error signals are smaller (minimized 
by virtue of minimizing reconstruction cost) than state signals. A fully predictive coding model is shown here 
only for completeness as one example of an error coding model that performs efficient inference but not 
efficient learning, but see (vii) for a variant of predictive coding that also performs efficient learning. (iv): A 
simple form of a stacked autoencoder (33)(42) uses reconstructive error signals to drive unsupervised learning 
within each processing stage. (v): In classic error backpropagation (5)(19), errors are passed backwards 
between network levels during supervised training offline. (vi) Contemporary backpropagation approaches 
(42)(43) utilize error signals during online inference (similar to hierarchical Bayesian inference) through 
between-stage connections as well as during offline learning, through the same between-stage connections. 
Placing error coding units in the feedforward path makes these operations possible through basic neural 
integration and Hebbian plasticity mechanisms. (vii): Predictive coding (21)(40) is computationally similar to 
(vi), but it differs at the implementation level by specifically positing that error information (rather than state 
information) is passed to the next higher cortical stage. (b) Between-stage and within-stage connectivity 
diagrams corresponding to the models in (a). Between-stage errors (black circles), measuring reconstruction 
performance, are computed in a similar fashion across models and can drive efficient hierarchical learning 
when coupled with state signals (white circles) (bottom four networks). The state and error computing networks 
only differ in the details of how error signals and state signals interact during inference and learning. Our data 
provide evidence for this large family of error-computing networks and rule out pure state-estimating models 
and variants including normalization and lateral inhibition (Fig. 5). The present data do not distinguish between 
the autoencoder and error backpropagation classes when directly compared (Supplementary Fig. 2); 
however, the stronger presence of state-like signals in the superficial cortical layers (Fig. 6c) argues against 
the predictive coding models in (iii) and (vii). 
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Supplementary Figure 1  Model diagrams and equations. (a) Network diagrams of two-stage models. All 
models have two inputs (u1, u2), at least two hidden units (x1, x2) (a.k.a. layer 1 of the network), and at least 
one output unit (y). For simulations, the inputs u1, u2 are set independently to simulate each hidden node 
receiving different amounts of external drive, depending on the choice of the applied image relative to the unit’s 
preferred image. The connection weights B = [b1, b2] transforming the hidden stage activations to the output 
unit are modeled as the same (b1 = b2). All units have self-connections that determine the degree of leak 
current set by the time constant τ. In the normalization models, the leak term is additionally controlled (linearly 
or nonlinearly) by the total activity in each stage (second row). In the feedback-based model, the feedback 
connections are symmetric to the feedforward connections with weights BT = [b1, b2]T, a column vector (third 
row). The error coding feedback model (bottom, right) has an additional stage that contributes to computation 
of error in the second stage (see Methods for details). (b) Equivalent system of differential equations for the 
networks shown in (a). The general linear matrix equation governing the dynamics of the models is shown in 
the top row followed by the weight matrices W for each model in subsequent rows. The weight matrices 
determine the connection architecture of the models. Each model class uses a similar number of parameters to 
specify a different arrangement of connections. Strictly speaking, the two normalization model classes cannot 
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be written as linear systems of differential equations since the coefficients on the diagonal depend on the the 
state variables themselves creating nonlinear (multiplicative) terms, and for all simulations, solutions were 
computed using a standard iterative differential equation solver. (c) Extension of the two-stage model 
architectures to three stages for the feedback model (compare to two-stage diagram in (a)). The three-stage 
model has an additional hidden processing stage compared to the two-stage model. An extra node is 
introduced at the top of the hierarchy to produce an error signal in the third stage. The connection matrix for 
this model is shown below its network diagram (compare to matrix in (b)). 
  



 
 
 
Supplementary Figure 2  Variants of error coding hierarchical models using different algorithms for online 
inference.  Existing forms of error computing networks can be distinguished by the type of online inference 
algorithm that they use (Figure 7). In one case, inference does not utilize top-down information between 
stages (autoencoder, classic error backpropagation; model classes (iv) and (v) in Figure 7). On the other 
hand, between-stage feedback can be used such as in more general forms of error backpropagation and 
predictive coding (models (vi) and (vii) in Figure 7). We approximated these two extremes by including a 
parameter (ktd, see Methods) controlling the relative weighting of bottom-up (feedforward) and top-down 
(feedback) evidence during online inference (first and second panels). We found that top-down inference 
between stages was not necessary to produce the appropriate error signals, and ktd was equal to zero in our 
best fitting two-layer and three-layers models (first panel is same model as two-layer error coding model in 
main text Figure 5) although models with ktd ~ 1 also performed well (second panel). Models can also differ in 
their goal (cost function) which directly impacts the error signals required (top row). Under a nonlinear 
reconstruction goal (emulating the nonlinear nature of spiking output), the resulting error signals are still 
consistent with our data (third column). A simple sigmoidal nonlinearity, however, did lead to additional details 
present in our neural data such as a rapid return of stimulus preference to zero in the hidden layer. When we 
tested a discriminative, construction goal more consistent with a supervised learning setting (e.g. classic error 
backpropagation) where bottom-up responses simply have to match a downstream target signal in 
classification tasks, we found that the errors of construction did not match the data as well as reconstruction 
errors (compare fourth column to first three columns; note absence of a reversal of selectivity in the hidden 
processing stage in fourth column) although both types of error outperformed all state-based models and were 
overall very similar (compare to Fig. 5). 
 

eyz

ex1y
ex2y

x1 x2

y

z

Supplementary Figure 2

Nonlinear reconstruction Construction

−0.1

0.1

r2=0.96 0.90 0.84 0.77

50 100

Pr
ef

er
en

ce

ex,y = x - BTy ex,y = x - (tanh(BTy - th) + bi)) ex,y = Bx - y

State and error coding
hierarchical model family

b1 b2

c

ktd b2ktd b1

ktd c

Cost:
Error:

Reconstruction

ktd=0 ktd=0.99

Time (ms)


